一、为什么RNN需要处理变长输入 假设我们有情感分析的例子,对每句话进行一个感情级别的分类,主体流程大概是下图所示: 思路比较简单,但是当我们进行batch个训练数据一起计算的时候,我们会遇到多个训练样例长度不同的情况,这样我们就会很自然的进行padding,将短句子padding为跟最长 ...
一 为什么RNN需要处理变长输入 假设我们有情感分析的例子,对每句话进行一个感情级别的分类,主体流程大概是下图所示: 思路比较简单,但是当我们进行batch个训练数据一起计算的时候,我们会遇到多个训练样例长度不同的情况,这样我们就会很自然的进行padding,将短句子padding为跟最长的句子一样。 比如向下图这样: 但是这会有一个问题,什么问题呢 比如上图,句子 Yes 只有一个单词,但是pa ...
2020-06-16 16:28 0 828 推荐指数:
一、为什么RNN需要处理变长输入 假设我们有情感分析的例子,对每句话进行一个感情级别的分类,主体流程大概是下图所示: 思路比较简单,但是当我们进行batch个训练数据一起计算的时候,我们会遇到多个训练样例长度不同的情况,这样我们就会很自然的进行padding,将短句子padding为跟最长 ...
一开始写这篇随笔的时候还没有了解到 Dateloader有一个 collate_fn 的参数,通过定义一个collate_fn 函数,其实很多batch补齐到当前batch最长的操作可以放在colla ...
PyTorch 训练 RNN 时,序列长度不固定怎么办? pytorch中如何在lstm中输入可变长的序列 上面两篇文章写得很好,把LSTM中训练变长序列所需的三个函数讲解的很清晰,但是这两篇文章没有给出完整的训练代码,并且没有写关于带label的情况,为此,本文给出一个完整的带label ...
在使用RNN based model处理序列的应用中,如果使用并行运算batch sample,我们几乎一定会遇到变长序列的问题。 通常解决变长的方法主要是将过长的序列截断,将过短序列用0补齐到一个固定长度(例如max_length)。 最后由n个sample组成的dataset能形成一个 ...
主要是用函数torch.nn.utils.rnn.PackedSequence()和torch.nn.utils.rnn.pack_padded_sequence()以及torch.nn.utils.rnn.pad_packed_sequence()来进行的,分别来看看这三个函数的用法 ...
我是做图像到语音音素识别相关的科研工作的,需要用到lstm识别一个序列帧所对应的音素,但是不同音素有不同长度的帧,所以需要解决变长序列的问题。 需要解决这个问题的原因是:不等长的序列无法进行batch 我主要参考的文章:https://blog.csdn.net/kejizuiqianfang ...
近几天处理了几天卷积LSTM,操作的数据格式太复杂,蓦然回首,突然发现自己不明白LSTM中的输入格式是什么了,于是写一篇文章帮助自己回忆一下,也希望能帮助到一起正在机器学习的伙伴。补充一下,在LSTM之后,GRU和LSTM几乎已经取代了传统的RNN,因此在称呼RNN的时候,大多数情况也是在称呼 ...
本文中的RNN泛指LSTM,GRU等等 CNN中和RNN中batchSize的默认位置是不同的。 CNN中:batchsize的位置是position 0. RNN中:batchsize的位置是position 1. 在RNN中输入数据格式 ...