利用时间序列预测方法,我们可以基于历史的情况来预测未来的情况。比如共享单车每日租车数,食堂每日就餐人数等等,都是基于各自历史的情况来预测的。 什么是时间序列? 时间序列,是指同一个变量在连续且固定的时间间隔上的各个数据点的集合,比如每5分钟记录的收费口车流量,或者每年 ...
本文以航司乘客数预测的例子来组织相关时间序列预测的代码,通过了解本文中的代码,当遇到其它场景的时间序列预测亦可套用。 航司乘客数序列 预测步骤 预测结果 完整代码 小结 陆陆续续写了 篇时间序列相关的文章了,本系列主要是应用为主,包括初识概念 时间序列数据可视化 时间序列分解 平稳 非平稳时间序列 时间序列缺失值处理 相关函数图 偏相关函数图 滞后图 时间序列复杂度量化 Granger caus ...
2020-06-16 09:32 1 1694 推荐指数:
利用时间序列预测方法,我们可以基于历史的情况来预测未来的情况。比如共享单车每日租车数,食堂每日就餐人数等等,都是基于各自历史的情况来预测的。 什么是时间序列? 时间序列,是指同一个变量在连续且固定的时间间隔上的各个数据点的集合,比如每5分钟记录的收费口车流量,或者每年 ...
在初始概念篇中,我们简单提到了时间序列由趋势、周期性、季节性、误差构成,本文将介绍如何将时间序列的这些成分分解出来。分解的使用场景有很多,比如当我们需要计算该时间序列是否具有季节性,或者我们要去除该时间序列的趋势和季节性,让时间序列变得平稳时都会用到时间序列分解。 加法和乘法时间序列 ...
转自:https://cloud.tencent.com/developer/article/1646121 什么是ARIMA? ARIMA是'Auto Regressive Integrated Moving Average'的简称。 ARIMA是一种基于时间序列历史值和历史 ...
目录 基于 Keras 用 LSTM 网络做时间序列预测 问题描述 长短记忆网络 LSTM 网络回归 LSTM 网络回归结合窗口法 基于时间步的 LSTM 网络回归 在批量训练之间保持 LSTM 的记忆 在批量 ...
本篇介绍时间序列预测常用的ARIMA模型,通过了解本篇内容,将可以使用ARIMA预测一个时间序列。 什么是ARIMA? ARIMA是'Auto Regressive Integrated Moving Average'的简称。 ARIMA是一种基于时间序列历史值 ...
引言 时间序列建模的主要目标之一就是对时间序列未来取值的预测. 而另一个最重要的目标即是对预测精确性的评估. 可以说之前的所有知识都是为预测与评估作准备的. 所谓预测就是利用已观测样本数据,对未来某时刻的取值进行估计. 对时间序列预测,基于这样一个假设: 已观测信息包含时间序列模型的所有信息 ...
优秀的统计学者,首先得具有良好的数学建模素养,再之是具备侦查数据的能力,其次是统计学实验的积累,最后才是统计学知识的储备。时间序列预测是一个非常有趣的课题,能使用时序预测的实际问题几乎涉及我们生活、工作、科研等方方面面。如:天气预报、股市预测、产品推荐、水文预报、计算机技术、空间技术(如:多时 ...
本文将介绍如何通过python来读取、展现时间序列数据。 读取 时间序列数据一般用cvs等电子表格的形式存储,这里以cvs为例: 可视化 本篇介绍了时间序列的一般数据格式和基于python的可视化方法,下一篇将介绍时间序列的分解方法,目的是通过分解出的时间序列 ...