介绍 茎叶图(Stem-and-Leaf display)又称“枝叶图”,由统计学家约翰托奇( Arthur Bowley)设计,它的思路是将数组中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干 ...
介绍 茎叶图(Stem-and-Leaf display)又称“枝叶图”,由统计学家约翰托奇( Arthur Bowley)设计,它的思路是将数组中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干 ...
与直方图相比,茎叶图更能细致的看出数据分布情况! 代码: > x<-c(25, 45, 50, 54, 55, 61, 64, 68, 72, 75, 75,+ 78, 79, 81, 83, 84, 84, 84, 85, 86, 86, 86,+ 87, 89 ...
哭晕 你真的学会了stem()函数了吗? stem()函数的使用方法是: stem(x, scale=1,width=80, atom=le-08) 其中x是数据向量. scale控制绘出茎叶图的长度. width绘图的宽度 ...
持续更新~ 散点图 条形图 文氏图 饼图 盒型图 频率直方图 热图 PCA图 3D图 火山图 分面图 分面制作小多组图 地图 练习数据: 想研究某现象的分子机制,老板豪气的来一句,先测个转录组吧,看下差异表达基因。 是否在心 ...
1、贝叶斯定理 P(A∣B)=P(A)P(B∣A)P(B) P(A|B)是已知B发生后A的条件概率,也由于得自B的取值而被称作A的后验概率。 P(B|A)是已知A发生后B的 ...
很久的时间没有更新了,一是因为每天加班到比较晚的时间,另外,公司不能上网,回家后就又懒得整理,最近在看机器学习实战的书籍,因此才又决定重新拾起原先的博客! 今天讲的是第三章的贝叶斯分类方法,我们从一个简简单单的例子开始入手:首先看(1)图中的例子,假设有一个装了7块时候的罐子,其中3块时 ...
自我理解贝叶斯算法也就是通过概率来判断C是属于A类还是B类,下面是具体代码(python3.5 测试通过) 文字流程解释一波 1 ) 加载训练数据和训练数据对应的类别 2) 生成词汇集,就是所有训练数据的并集 3) 生成训练数据的向量集,也就是只包含0和1的向量集 ...
目录 图模型 贝叶斯网络 条件独立的三种情况 第一种情况tail-to-tail 第二种情况tail-to-head 第三种情况head-to-head D-seperation 贝叶斯网络模型 图模型 图 ...