说到自然语言,我就会想到朴素贝叶斯,贝叶斯核心就是条件概率,而且大多数自然语言处理的思想也就是条件概率。 所以我用预测一个句子出现的概率为例,阐述一下自然语言处理的思想。 统计语言模型-概率 句子,就是单词的序列,句子出现的概率就是这个序列出现的概率 可以想象上面这个式子计算量 ...
,概述 语言模型可以说是NLP中最基本的任务,无论是词向量,预训练模型,文本生成等任务中都带有语言模型的影子。语言模型本质上是对一个自然世界中存在的句子建模,描述一个句子发生的概率,因此语言模型也是一个自回归的任务。语言模型是一个上下文强依赖的任务,不仅需要捕获长距离的信息,还需要学到词之间的位置关系,从目前的技术来看,RNN系的模型在语言模型任务上的表现要优于transformer,主要原因还 ...
2020-06-14 22:19 0 1393 推荐指数:
说到自然语言,我就会想到朴素贝叶斯,贝叶斯核心就是条件概率,而且大多数自然语言处理的思想也就是条件概率。 所以我用预测一个句子出现的概率为例,阐述一下自然语言处理的思想。 统计语言模型-概率 句子,就是单词的序列,句子出现的概率就是这个序列出现的概率 可以想象上面这个式子计算量 ...
1. 语言模型 2. RNN LSTM语言模型 (梯度权重) (1)one to one : 图像分类 (2)one to many:图片描述 (3)many to one:文本情感分析、分类 (4)many to many(N ...
基于LSTM语言模型的文本生成 目录 基于LSTM语言模型的文本生成 1. 文本生成 1.1 基于语言模型的文本生成 1.2 使用深度学习方法的文本生成 1.3 Sampling问题 ...
神经结构进步、GPU深度学习训练效率突破。RNN,时间序列数据有效,每个神经元通过内部组件保存输入信息。 卷积神经网络,图像分类,无法对视频每帧图像发生事情关联分析,无法利用前帧图像信息。RNN最大 ...
参考: https://mp.weixin.qq.com/s/NvwB9H71JUivFyL_Or_ENA http://yangminz.coding.me/blog/post/MinkolovRNNLM/MinkolovRNNLM_thesis.html 语言模型本质上是在回答一个 ...
1. 语言模型 2. Attention Is All You Need(Transformer)算法原理解析 3. ELMo算法原理解析 4. OpenAI GPT算法原理解析 5. BERT算法原理解析 6. 从Encoder-Decoder(Seq2Seq)理解Attention ...
的线性隐层的降维作用(减少训练参数) 这是一个最初版的神经网络语言模型 选取 ...
论文通过实现RNN来完成了文本分类。 论文地址:88888888 模型结构图: 原理自行参考论文,code and comment(https://github.com/graykode/nlp-tutorial): LSTM ...