F.cross_entropy(x,y) 结果: softmax: tensor([[0.0117, 0.0317, 0.0861, 0.2341, 0.6364], [0.0117, 0.0317, 0.0861, 0.2341, 0.6364], [0.0117 ...
F.cross_entropy(x,y) 结果: softmax: tensor([[0.0117, 0.0317, 0.0861, 0.2341, 0.6364], [0.0117, 0.0317, 0.0861, 0.2341, 0.6364], [0.0117 ...
推荐参考:https://www.freesion.com/article/4488859249/ 实际运用时注意: F.binary_cross_entropy_with_logits()对应的类是torch.nn.BCEWithLogitsLoss,在使用时会自动添加sigmoid,然后计 ...
1、说在前面 最近在学习object detection的论文,又遇到交叉熵、高斯混合模型等之类的知识,发现自己没有搞明白这些概念,也从来没有认真总结归纳过,所以觉得自己应该沉下心,对以前的知识做一个回顾与总结,特此先简单倒腾了一下博客,使之美观一些,再进行总结。本篇博客先是对交叉熵损失函数进行 ...
cross_entropy-----交叉熵是深度学习中常用的一个概念,一般用来求目标与预测值之间的差距。 在介绍softmax_cross_entropy,binary_cross_entropy、sigmoid_cross_entropy之前,先来回顾一下信息量、熵、交叉熵 ...
损失函数与代价函数:目前理解是损失函数就是代价函数,且在损失函数的基础上进行梯度下降,找到最优解。 损失函数:根据目标模型的不同,会分为回归损失函数,逻辑回归分类损失。 MSE损失函数:度量特征图之间的距离,目标是提取特征图推理一致性。平均平方误差(mean ...
tf.nn.sigmoid_cross_entropy_with_logits(_sentinel=None,labels=None, logits=None, name=None) sigmoid_cross_entropy_with_logits详解 这个函数的输入是logits ...
softmax_cross_entropy_with_logits函数原型: tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=pred, name=None)函数功能:计算最后一层是softmax层的cross ...
softmax是logisitic regression在多酚类问题上的推广,\(W=[w_1,w_2,...,w_c]\)为各个类的权重因子,\(b\)为各类的门槛值。不要想象成超平面,否则很难理解,如果理解成每个类的打分函数,则会直观许多。预测时我们把样本分配到得分最高的类 ...