转载请注明出处: http://blog.csdn.net/u013074302/article/details/76422551 导语 在NLP领域,语义相似度的计算一直是个难题:搜索场景下query和Doc的语义相似度、feeds场景下Doc和Doc的语义相似度、机器翻译场景下 ...
参考: 文本比较算法 LD算法 文本比较算法 Needleman Wunsch算法 文本比较算法 计算文本的相似度 文本比较算法 Nakatsu算法 目录: 问题 LD算法 Needleman Wunsch算法 Nakatsu算法 问题 字符串s 和 字符串s 的比较算法 gt 相似度 or 差异性。 主流的算法有两大类: 基于编辑距离 Edit Distance ,例如:LD算法 基于最长公共 ...
2020-06-08 21:12 0 1050 推荐指数:
转载请注明出处: http://blog.csdn.net/u013074302/article/details/76422551 导语 在NLP领域,语义相似度的计算一直是个难题:搜索场景下query和Doc的语义相似度、feeds场景下Doc和Doc的语义相似度、机器翻译场景下 ...
0 引言 在自然语言处理任务中,我们经常需要判断两篇文档是否相似、计算两篇文档的相似程度。比如,基于聚类算法发现微博热点话题时,我们需要度量各篇文本的内容相似度,然后让内容足够相似的微博聚成一个簇;在问答系统中,我们会准备一些经典问题和对应的答案,当用户的问题和经典问题很相似时,系统直接返回 ...
在工作中一直使用余弦相似度算法计算两段文本的相似度和两个用户的相似度。一直弄不明白多维的余弦相似度公式是怎么推导来的。今天终于花费时间把公式推导出来,其实很简单,都是高中学过的知识,只是很多年没用了,都还给老师了。本文还通过一个例子演示如果使用余弦相似度计算两段文本的相似度。 余弦函数 ...
文本相似度算法 1.信息检索中的重要发明TF-IDF 1.1TF Term frequency即关键词词频,是指一篇文章中关键词出现的频率,比如在一篇M个词的文章中有N个该关键词,则 (公式1.1-1) 为该关键词在这篇文章中的词频。 1.2IDF Inverse document ...
1. 文本相似度计算-文本向量化 2. 文本相似度计算-距离的度量 3. 文本相似度计算-DSSM算法 4. 文本相似度计算-CNN-DSSM算法 1. 前言 之前介绍了DSSM算法,它主要是用了DNN的结构来对数据进行降维度,本文用CNN的结构对数据进行降维。 2. CNN-DSSM ...
1. 文本相似度计算-文本向量化 2. 文本相似度计算-距离的度量 3. 文本相似度计算-DSSM算法 4. 文本相似度计算-CNN-DSSM算法 1. 前言 最近在学习文本相似度的计算,前面两篇文章分别介绍了文本的向量化和文本的距离度量,这两篇文章的思路主要在机器学习的框架下面,本文 ...
simhash ...
@祁俊辉,2017年6月22日测试。 1 说明 本程序以关于SimHash算法的实现及测试V4.0为基础,利用JSP添加JavaBean接口,改为网页版; 因为在网页版比较相似度时,生成txt文档会耗费一定的时间,而且在Tomcat发布后路径不方便控制,所以取消txt文档的输入输出 ...