概述GAN(Generative Adversarial Network,生成对抗网络)是一个网络框架,它通常包括两部分,生成器(generator)和判别器(discriminator)。生成器的作用是学习真实数据的分布(或者通俗地说就是学习真实数据的特征),然后自动地生成新的数据 ...
以下内容纯属经验之谈,无公式推断 部分内容源自其他博客或课程,并已标注来源。 问题篇 .模式崩溃 在某个模式 mode 下出现大量重复样本,如左图中,生成的样本分布靠得很近,较聚集,可视化如右图,表现为生成多个相同或相似度很高的样本,缺乏多样性。 .模式丢失 顾名思义,某些模式 mode 没有,同样缺乏多样性,虽然生成的样本已经尽可能拟合真实分布,分布也不聚集,但是存在某些模式的丢失,例如下图中人 ...
2020-05-29 10:23 0 884 推荐指数:
概述GAN(Generative Adversarial Network,生成对抗网络)是一个网络框架,它通常包括两部分,生成器(generator)和判别器(discriminator)。生成器的作用是学习真实数据的分布(或者通俗地说就是学习真实数据的特征),然后自动地生成新的数据 ...
GAN自推出以来就以训练困难著称,因为它的训练过程并不是寻找损失函数的最小值,而是寻找生成器和判别器之间的纳什均衡。前者可以直接通过梯度下降来完成,而后者除此之外,还需要其它的训练技巧。 下面对历年关于GAN的论文提出的训练技巧进行总结,这里仅记录技巧,具体原理请直接看论文原文 ...
我最近在学使用Pytorch写GAN代码,发现有些代码在训练部分细节有略微不同,其中有的人用到了detach()函数截断梯度流,有的人没用detch(),取而代之的是在损失函数在反向传播过程中将backward(retain_graph=True),本文通过两个 gan 的代码,介绍它们的作用 ...
问题1,模式坍塌(Mode collapse ) 对模式崩溃产生原因的猜想: GAN的学习目标是映射关系G:x➡y,这种单一域之间的对应关系是高度约束不足的,无法为分类器和判别其的训练提供足够的信息输入。 在这种情况下所优化得到的G可以将域X转换为与Y分布相同的域 ...
在 /home/your_name/TensorFlow/DCGAN/ 下新建文件 train.py,同时新建文件夹 logs 和文件夹 samples,前者用来保存训练过程中的日志和模型,后者用来保存训练过程中采样器的采样图片,在 train.py 中输入如下代码: 输入完成后 ...
把GAN的论文看完了, 也确实蛮厉害的懒得写笔记了,转一些较好的笔记,前面先贴一些 原论文里推理部分,进行备忘。 GAN的解释 算法流程 GAN的理论推理 转自:https://zhuanlan.zhihu.com/p/27295635 Generative ...
GAN 原始GAN中判别器要最小化如下损失函数,尽可能把真实样本分为正例,生成样本分为负例: 其中是真实样本分布,是由生成器产生的样本分布。 第一个式子我们不看梯度符号的话即为判别器的损失函数,logD(xi)为判别器将真实数据判定为真实数据的概率,log(1-D(G(zi ...
生成对抗网络(GAN)是当今最流行的图像生成方法之一,但评估和比较 GAN 产生的图像却极具挑战性。之前许多针对 GAN 合成图像的研究都只用了主观视觉评估,一些定量标准直到最近才开始出现。本文认为现有指标不足以评估 GAN 模型,因此引入了两个基于图像分类的指标——GAN ...