一、数据挖掘流程介绍 1.数据读取 -读取数据 -统计指标 -数据规模 2.数据探索(特征理解) -单特征的分析,诸个变量分析对结果y的影响(x,y的相关性) -多变量分析(x,y之间的相关性) -统计绘图 3.数据清洗和预处理 ...
一,典型课题研究 建立一个预测模型来回答以下问题: 什么样的人更有可能生存 二,数据 ,数据源:https: www.kaggle.com c titanic ,用到的库: Numpy 科学计算库 主要用来做矩阵运算,什么 你不知道哪里会用到矩阵,那么这样想吧,咱们的数据就是行 样本 和列 特征 组成的,那么数据本身不就是一个矩阵嘛。 Pandas 数据分析处理库 很多小伙伴都在说用python处 ...
2020-05-25 19:31 0 3331 推荐指数:
一、数据挖掘流程介绍 1.数据读取 -读取数据 -统计指标 -数据规模 2.数据探索(特征理解) -单特征的分析,诸个变量分析对结果y的影响(x,y的相关性) -多变量分析(x,y之间的相关性) -统计绘图 3.数据清洗和预处理 ...
决策树分类的应用场景非常广泛,在各行各业都有应用,比如在金融行业可以用决策树做贷款风险评估,医疗行业可以用决策树生成辅助诊断,电商行业可以用决策树对销售额进行预测等。 基于决策树还诞生了很多数据挖掘算法,比如随机森林(Random forest)。 sklearn 中的决策树模型 到目前为止 ...
一、任务基础 泰坦尼克号沉没是历史上最著名的沉船事故之一。1912年4月15日,在她的处女航中,泰坦尼克号在与冰山相撞后沉没,在2224名乘客和机组人员中造成1502人死亡。这场耸人听闻的悲剧震惊了国际社会,并为船舶制定了更好的安全规定。造成海难失事的原因之一是乘客和机组人员没有足够的救生艇 ...
四、特征重要性衡量 通过上面可以发现准确率有小幅提升,但是似乎得到的结果还是不太理想。我们可以发现模型似乎优化的差不多了,使用的特征似乎也已经使用完了。准确率已经达到了瓶颈,但是如果我们还想提高精度的话,还是要回到最原始的数据集里面。对分类器的结果最大的影响还是输入的数据本身。接下来采用的方法 ...
...
的bad case和产生的原因』等等。 2、 对数据的认识太重要了! 数据中的特殊点/离群点的分 ...
本次项目主要围绕Kaggle上的比赛题目: "给出泰坦尼克号上的乘客的信息, 预测乘客是否幸存" 进行数据分析 环境 win8, python3.7, jupyter notebook 目录 1. 项目背景 2. 数据概览 3. 特征分析 4. 特征工程 5. 构建模型 正文 ...
1、数据来源 (1)数据来源 来自kaggle的数据集Titanic:Titanic: Machine Learning from Disaster train文档数据是用来分析和建模,包含有生存情况信息;test数据是用来最终预测其生存情况并生成结果文件。 2、分析流程 (1)不同变量 ...