原文:决策树为什么不用分类错误率?

决策树为什么不用分类错误率 例如有这样一棵树 计算出减少的错误率为 可以看到增益为 但是使用熵却可以识别出来是有减少的 ...

2020-05-22 20:42 0 567 推荐指数:

查看详情

决策树(一)决策树分类

决策树 与SVM类似,决策树在机器学习算法中是一个功能非常全面的算法,它可以执行分类与回归任务,甚至是多输出任务。决策树的算法非常强大,即使是一些复杂的问题,也可以良好地拟合复杂数据集。决策树同时也是随机森林的基础组件,随机森林在当前是最强大的机器学习算法之一。 在这章我们会先讨论如何使用 ...

Fri Feb 28 01:08:00 CST 2020 0 3651
决策树分类

决策树分类   决策树分类归类于监督学习,能够根据特征值一层一层的将数据集进行分类。它的有点在于计算复杂度不高,分类出的结果能够很直观的呈现,但是也会出现过度匹配的问题。使用ID3算法的决策树分类第一步需要挑选出一个特征值,能够将数据集最好的分类,之后递归构成分类。使用信息增益,来得到最佳 ...

Wed Apr 25 05:41:00 CST 2018 0 1088
决策树算法2-决策树分类原理2.3-信息增益

决策树的划分依据-信息增益C4.5 1 背景 信息增益准则ID3对可取值数目较多的属性有所偏好,为减少这种偏好可能带来的不利影响,著名的 C4.5 决策树算法[Quinlan, 1993J 不直接使用信息增益,而是使用"增益" (gain ratio) 来选择最优划分 ...

Wed Sep 22 23:22:00 CST 2021 0 230
决策树分类算法

数据挖掘系列(6)决策树分类算法 从这篇开始,我将介绍分类问题,主要介绍决策树算法、朴素贝叶斯、支持向量机、BP神经网络、懒惰学习算法、随机森林与自适应增强算法、分类模型选择和结果评价。总共7篇,欢迎关注和交流。   这篇先介绍分类问题的一些基本知识,然后主要讲述决策树算法的原理、实现,最后 ...

Wed Aug 21 01:15:00 CST 2013 0 3597
决策树分类及实例

本文介绍机器学习中最基础最简单的决策树分类 参考: https://zhuanlan.zhihu.com/p/133838427 https://zhuanlan.zhihu.com/p/30059442 https://www.kaggle.com/prashant111 ...

Tue Mar 01 01:28:00 CST 2022 0 843
决策树分类算法

决策树算法是一种归纳分类算法,它通过对 训练集的学习,挖掘出有用的 规则,用于对 新集进行 预测。在其生成过程中,分割时属性选择度量指标是关键。通过属性选择度量,选择出最好的将样本分类的属性。 å³ç­æ åç±»ç®æ³æ¦è¿°" width ...

Wed Oct 23 17:12:00 CST 2019 0 1537
决策树分类原理

上一篇博客我们看了一个决策树分类的例子,但是我们没有深入决策树分类的内部原理。 这节我们讨论的决策树分类的所有特征的特征值都是离散的,明白了离散特征值如何分类的原理,连续值的也不难理解。 决策树分类的核心在于确定那一个特征的那一个特征值分类最有效,可能不同的场景,每个人采用的衡量方法也不一样 ...

Mon Oct 17 23:53:00 CST 2016 0 2175
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM