1.KL散度 KL散度( Kullback–Leibler divergence)是描述两个概率分布P和Q差异的一种测度。对于两个概率分布P、Q,二者越相似,KL散度越小。 KL散度的性质:P表示真实分布,Q表示P的拟合分布 非负性:KL(P||Q)>=0,当P=Q时,KL(P ...
目录 KS 不需要两组数据相同shape JS散度 需要两组数据同shape KS 不需要两组数据相同shape 奇怪之处:有的地方也叫KL KS距离,相对熵,KS散度 当P x 和Q x 的相似度越高,KS散度越小 KS散度主要有两个性质: 不对称性 不对称性尽管KL散度从直观上是个度量或距离函数,但它并不是一个真正的度量或者距离,因为它不具有对称性,即D P Q D Q P 非负性 相对熵的 ...
2020-05-17 05:41 0 2185 推荐指数:
1.KL散度 KL散度( Kullback–Leibler divergence)是描述两个概率分布P和Q差异的一种测度。对于两个概率分布P、Q,二者越相似,KL散度越小。 KL散度的性质:P表示真实分布,Q表示P的拟合分布 非负性:KL(P||Q)>=0,当P=Q时,KL(P ...
KL DivergenceKL( Kullback–Leibler) Divergence中文译作KL散度,从信息论角度来讲,这个指标就是信息增益(Information Gain)或相对熵(Relative Entropy),用于衡量一个分布相对于另一个分布的差异性,注意,这个指标不能用 ...
在信息论和概率论中,KL散度描述两个概率分布\(P\)和\(Q\)之间的相似程度。 定义为: \[D(p||q)=\sum\limits_{i=1}^np(x)\log\frac{p(x)}{q(x)}. \] ...
1. KL散度 KL散度又称为相对熵,信息散度,信息增益。KL散度是是两个概率分布 $P$ 和 $Q$ 之间差别的非对称性的度量。 KL散度是用来 度量使用基于 $Q$ 的编码来编码来自 $P$ 的样本平均所需的额外的位元数。 典型情况下,$P$ 表示数据的真实分布,$Q$ 表示 ...
熵、交叉熵、KL散度、JS散度 一、信息量 事件发生的可能性大,信息量少;事件发生的可能性小,其信息量大。 即一条信息的信息量大小和它的不确定性有直接的关系,比如说现在在下雨,然后有个憨憨跟你说今天有雨,这对你了解获取天气的信息没有任何用处。但是有人跟你说明天可能也下雨,这条信息就比前一条 ...
KL散度、JS散度和交叉熵三者都是用来衡量两个概率分布之间的差异性的指标 1. KL散度 KL散度又称为相对熵,信息散度,信息增益。KL散度是是两个概率分布 P">P 和 Q">Q (概率分布P(x)和Q(x)) 之间差别的非对称性的度量。 KL散度是用来 度量使用基于 Q">Q 的编码 ...
MATLAB小函数:计算KL散度与JS散度 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 问题:给定两个向量,计算这两个向量之间的Kullback-Leibler Divergence与Jensen-Shannon Divergence。KL散 ...
怎样比较、分析两组或者两组以上的数据? 相信许多人包括数据分析师也 会有这样类似的问题:假如有三组数据,如何分析比较、判定这三组数据,从中能得出什么结论?这个问题比较有代表性,对于两组或者两组以上的数据比较,其实 可以转化为诸多业务问题。例如,两组物流商,分别有两个月的运作时效数据,该如何对比 ...