一.模型结构 线性回归算是回归任务中比较简单的一种模型,它的模型结构可以表示如下: \[f(x)=w^Tx^* \] 这里\(x^*=[x^T,1]^T\),\(x\in R^n\),所以\(w\in R^{n+1}\),\(w\)即是模型需要学习的参数,下面造一些伪数据进行演示 ...
一.过拟合 建模的目的是让模型学习到数据的一般性规律,但有时候可能会学过头,学到一些噪声数据的特性,虽然模型可以在训练集上取得好的表现,但在测试集上结果往往会变差,这时称模型陷入了过拟合,接下来造一些伪数据进行演示: 目前看起来效果还是可以的,但如果加入几个异常点,再看看效果呢 二.正则化 可以看到,仅仅加入了几个很离谱的异常点,就会对预测产生很大的影响,且偏离很远,这在实际情况中是很常见的 通常 ...
2020-05-16 10:52 0 1556 推荐指数:
一.模型结构 线性回归算是回归任务中比较简单的一种模型,它的模型结构可以表示如下: \[f(x)=w^Tx^* \] 这里\(x^*=[x^T,1]^T\),\(x\in R^n\),所以\(w\in R^{n+1}\),\(w\)即是模型需要学习的参数,下面造一些伪数据进行演示 ...
注:正则化是用来防止过拟合的方法。在最开始学习机器学习的课程时,只是觉得这个方法就像某种魔法一样非常神奇的改变了模型的参数。但是一直也无法对其基本原理有一个透彻、直观的理解。直到最近再次接触到这个概念,经过一番苦思冥想后终于有了我自己的理解。 0. 正则化(Regularization ...
编者注:本文采用梯度下降法来求解的logistic回归,关于其思想以及编程原理见本人之前文章《梯度下降法求解线性回归的python实现及其结果可视化》(https://zhuanlan.zhihu.com/p/30562194),在这里不再赘述。 01 非线性决策边界 ...
git:https://github.com/linyi0604/MachineLearning 通过比较 经过正则化的模型 泛化能力明显的更好啦 ...
程序本地地址:ex2data2_regularized.py 编者注:本文采用梯度下降法来求解的logistic回归,关于其思想以及编程原理见本人之前文章《梯度下降法求解线性回归的python实现及其结果可视化》(https://zhuanlan.zhihu.com/p ...
本文根据水库中蓄水标线(water level) 使用正则化的线性回归模型预 水流量(water flowing out of dam),然后 debug 学习算法 以及 讨论偏差和方差对 该线性回归模型的影响。 ①可视化数据集 本作业的数据集分成三部分: ⓐ训练集(training ...
机器学习-正则化(岭回归、lasso)和前向逐步回归 观看本文之前,您也许可以先看一下后来写的一篇补充:https://www.cnblogs.com/jiading/p/12104854.html 本文代码均来自于《机器学习实战》 这三种要处理的是同样的问题,也就是数据的特征数量大于样本 ...
一 线性回归(Linear Regression ) 1. 线性回归概述 回归的目的是预测数值型数据的目标值,最直接的方法就是根据输入写出一个求出目标值的计算公式,也就是所谓的回归方程,例如y = ax1+bx2,其中求回归系数的过程就是回归。那么回归是如何预测的呢?当有了这些回归 ...