0x01 层次聚类简介 层次聚类算法(Hierarchical Clustering)将数据集划分为一层一层的clusters,后面一层生成的clusters基于前面一层的结果。层次聚类算法一般分为两类: Divisive 层次聚类:又称自顶向下(top-down)的层次聚类,最开始所有 ...
说在前面 本人博客新手一枚,象牙塔的老白,职业场的小白。以下内容仅为个人见解,欢迎批评指正,不喜勿喷 认真看图 认真看图 补充说明 聚类算法可以作为独立方法将数据聚成不同簇,也可以作为数据挖掘任务 例如分类 关联规则等 的预处理 补充说明 聚类算法与分类算法的主要区别在于训练时的样本有无标签,聚类算法无监督学习,分类算法有监督学习 再说一句 本文主要介绍机器学习中聚类算法的演变路径,和往常一样, ...
2020-05-16 01:46 0 1476 推荐指数:
0x01 层次聚类简介 层次聚类算法(Hierarchical Clustering)将数据集划分为一层一层的clusters,后面一层生成的clusters基于前面一层的结果。层次聚类算法一般分为两类: Divisive 层次聚类:又称自顶向下(top-down)的层次聚类,最开始所有 ...
本文主要讲解的聚类算法有:k均值算法、均值漂移算法、凝聚层次算法、DBSCAN密度聚类算法,还介绍了聚类算法性能指标——轮廓系数。 聚类(cluster)与分类(class)不同,分类是有监督学习模型,聚类属于无监督学习模型。聚类讲究使用一些算法把样本划分为n个群落。一般情况下,这种算法 ...
不管是实验室研究机器学习算法或是公司研发,都有需要自己改进算法的时候,下面就说说怎么在weka里增加改进的机器学习算法。 一 添加分类算法的流程 1 编写的分类器必须继承 Classifier或是Classifier的子类;下面用比较简单的zeroR举例说明; 2 复写接口 ...
1.优缺点 优点: (1)聚类速度快且能够有效处理噪声点和发现任意形状的空间聚类; (2)与K-MEANS比较起来,不需要输入要划分的聚类个数; (3)聚类簇的形状没有偏倚; (4)可以在需要时输入过滤噪声的参数。 缺点: (1)当数据量增大时,要求较大的内存支持I/O消耗也很大 ...
共有以下几种评价指标: 其中,仅轮廓系数比较合理,别的不过是牵强附会罢了,就差欺世盗名了。 混淆矩阵均- -性完整性V-measure调整兰德系数(ARI)调整互信息(AMI)轮廓系数(Silho ...
K-means 原理 距离计算方法 在K-Means算法中,需要注意的是,对于距离的计算有很多中方法: (1)闵可夫斯基距离( Minkowski ) \[d(x,y) = (\sum_{i=1}^n|x_i-y_i|^p)^{\frac{1}{p}} \] 注意这里p ...
本文由ChardLau原创,转载请添加原文链接https://www.chardlau.com/mean-shift/ 今天的文章介绍如何利用Mean Shift算法的基本形式对数据进行聚类操作。而有关Mean Shift算法加入核函数计算漂移向量部分的内容将不在本文讲述范围内。实际上除了聚类 ...
PS:因为没有找到实际应用的场景,所以两个示例直接采用了官网的示例。以后遇到实际的应用场景了,再替换成实际的例子。 1.算法简介 双聚类简单来说就是在数据矩阵A中寻找一个满足条件矩阵B1的子矩阵A1,而B1是条件矩阵B的一个子矩阵. 2.算法常用的计算模型 目前 ...