把GAN的论文看完了, 也确实蛮厉害的懒得写笔记了,转一些较好的笔记,前面先贴一些 原论文里推理部分,进行备忘。 GAN的解释 算法流程 GAN的理论推理 转自:https://zhuanlan.zhihu.com/p/27295635 Generative ...
常见的GAN网络的相关原理及推导 在上一篇中我们给大家介绍了GAN的相关原理和推导,GAN是VAE的后一半,再加上一个鉴别网络。这样而导致了完全不同的训练方式。 GAN,生成对抗网络,主要有两部分构成:生成器,判别器。 生成器网络的主要工作是负责生成样本数据,输入的是高斯白噪声z,输出的是样本数据向量x: 判别器网络的主要工作是负责检测样本的数据增加,输入真实或者生成的样本数据,输出样本的标签: ...
2020-05-13 22:13 0 884 推荐指数:
把GAN的论文看完了, 也确实蛮厉害的懒得写笔记了,转一些较好的笔记,前面先贴一些 原论文里推理部分,进行备忘。 GAN的解释 算法流程 GAN的理论推理 转自:https://zhuanlan.zhihu.com/p/27295635 Generative ...
Generative Adversarial Network,就是大家耳熟能详的 GAN,由 Ian Goodfellow 首先提出,在这两年更是深度学习中最热门的东西,仿佛什么东西都能由 GAN 做出来。我最近刚入门 GAN,看了些资料,做一些笔记。 可以参考另一篇,GAN原理 ...
转自:https://blog.csdn.net/ch18328071580/article/details/96690016 概述 1、什么是GAN? 生成对抗网络简称GAN,是由两个网络组成的,一个生成器网络和一个判别器网络。这两个网络可以是神经网络(从卷积神经网络、循环神经网络到自编 ...
在一篇博客GAN网络从入门教程(一)之GAN网络介绍中,简单的对GAN网络进行了一些介绍,介绍了其是什么,然后大概的流程是什么。 在这篇博客中,主要是介绍其数学公式,以及其算法流程。当然数学公式只是简单的介绍,并不会设计很复杂的公式推导。如果想详细的了解GAN网络的原理,推荐去看李宏毅老师的课程 ...
Normlization 为什么要进行 Normlization 防止深度神经网络,每一层得参数更新会导致上层的输入数据发生变化,通过层层叠加,高层的输入分布变化会十分剧烈,这就使得高层需要不断去重新适应底层的参数更新。为了训好模型,我们需要非常谨慎地去设定学习率、初始化权重、以及尽可能细致 ...
G模型 总结 参考 如果说最经常被用来处理图像的网络 ...
最近一直在看GAN,我一直认为只有把博客看了一遍,然后再敲一遍。这样才会有深刻的感悟。 GAN(生成式对抗网络)(GAN, Generative Adversarial Networks )是一种深度学习模型,分布在无监督学习上。 分成两个模块:生成模型(Generative Model ...
转自机器之心整理的,来自Goodfellow 在 NIPS 2016 的演讲和台大李弘毅的解释,完成原 GAN 的推导、证明与实现。 本文主要分四部分,第一部分描述 GAN 的直观概念,第二部分描述概念与优化的形式化表达,第三部分将对 GAN 进行详细的理论推导与分析,最后我们将实现前面的理论 ...