基于空间金字塔池化的卷积神经网络物体检测 原文地址:http://blog.csdn.net/hjimce/article/details/50187655 作者:hjimce 一、相关理论 本篇博文主要讲解大神何凯明2014年的paper ...
Pyramid scene parsing network. In Proc. CVPR, pages , 目的:扩大感受野,尽可能的利用全局上下文信息 某种程度上,可以认为感受野大小可以认为是对上下文信息利用的程度 。 做法: .对骨干提取的feature map channel N 做池化得到特征金字塔, .然后通过 深度卷积降通道分别得到 , , , 的channel N的特征图 .对特征图 ...
2020-05-13 17:15 0 1379 推荐指数:
基于空间金字塔池化的卷积神经网络物体检测 原文地址:http://blog.csdn.net/hjimce/article/details/50187655 作者:hjimce 一、相关理论 本篇博文主要讲解大神何凯明2014年的paper ...
,例如著名的VGG模型则要求输入数据大小是 (224*224) 。 固定输入数据大小有两个问题: 1 ...
在学习r-cnn系列时,一直看到SPP-net的身影,许多有疑问的地方在这篇论文里找到了答案。 论文:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 转自:http ...
,因而借助空间金字塔池化的方法来衔接两者,SPPNet在检测领域的重要贡献是避免了R-CNN的变形、重复计算等 ...
多尺度检测(不同的idea) (特征金字塔)(空间金字塔池化)(带洞空间金字塔池化)(融合深浅层特征) 检测和分割中的例子 分割: sppnet中的spp空间金字塔池化结构;(spatial pyramid pooling) pspnet中的pyramid pooling ...
《Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition》,这篇paper提出了空间金字塔池化。 之前学习的RCNN,虽然使用了建议候选区域使得速度大大降低,但是对于超大容量的数据,计算速度 ...
空间金字塔池化技术, 厉害之处,在于使得我们构建的网络,可以输入任意大小的图片,不需要经过裁剪缩放等操作。 是后续许多金字塔技术(psp,aspp等)的起源,主要的目的都是为了获取场景语境信息,获取上下文的联系。 如图所示,对于选择的不同大小的区域对应到卷积之后的特征图上 ...
本文来自公众号“每日一醒” SPP 对于一个CNN模型,可以将其分为两个部分: 前面包含卷积层、激活函数层、池化层的特征提取网络,下称CNN_Pre, 后面的全连接网络,下称CNN_Post。 许多CNN模型都对输入的图片大小有要求,实际上 ...