首先,设定全局平均池GAP化来代替FC,由于FC层参数多,训练速度慢,并且会将一定的特征存储在这些参数内。用一个GAP将N个feature map降维成1*N大小的feature map,再用class个1*1卷积核将1*N的feature map卷成1*class的向量。因此,整个过程在维度 ...
平均池化 avgpooling 可以保留背景信息。在feature map上以窗口的形式进行滑动 类似卷积的窗口滑动 ,操作为取窗口内的平均值作为结果,经过操作后, feature map降采样,减少了过拟合现象。前向传播就是把一个patch中的值求取平均来做pooling,那么反向传播的过程也就是把某个元素的梯度等分为n份分配给前一层, 这样就保证池化前后的梯度 残差 之和保持不变。 最大池化 ...
2020-05-12 16:49 0 1799 推荐指数:
首先,设定全局平均池GAP化来代替FC,由于FC层参数多,训练速度慢,并且会将一定的特征存储在这些参数内。用一个GAP将N个feature map降维成1*N大小的feature map,再用class个1*1卷积核将1*N的feature map卷成1*class的向量。因此,整个过程在维度 ...
全局平均池化与全连接对比 输出对比 全局平均池化就是把特征图全局平均一下输出一个值,也就是把W*H*D的一个张量变成1*1*D的张量。 常用的平均池化,平均池化会有它的filter size,比如 2 * 2,全局平均池化就没有size,它针对的是整张feature map. 例如:把一个 ...
在卷积特征之上有消除全连接层的趋势。最有力的例子是全局平均池化(global average pooling),它已被应用于最先进的图像分类模型中。 提出:Lin, M., Chen, Q., & Yan, S. (2013). Network in network. arXiv ...
这是一个最大池化的 ...
实验手册有云: 前向传播时,输出特征图Y中某一位置的值的输入特征图X对应池化窗口的最大值。计算公式为 如何理解? 输出中,n表示特征图号,c是通道号,h是行号,w是列号,kh∈[1,K],kw∈[1,K],k是池化窗口的长、宽大小。 上网查询,很容易 ...
一. 最大池化 池化:把图片使用均等大小网格分割,并求网格内代表值的操作 最大池化:将网格中的最大值作为这个网格的代表值 二. 使用4*4网格对图像进行最大池化操作 三. 输出结果: 最大池化后图 ...
一. 池化简介 平均池化:将图片按照固定大小网格分割,网格内的像素值取网格内所有像素的平均值。 池化:使用均等大小的网格将图片分割,并求网格内代表值的过程。 池化是卷积神经网络(convolutional neural network)中非常重要的处理方式,能够有效地 ...
在卷积神经网络的最后,往往会出现一两层全连接层,全连接一般会把卷积输出的二维特征图转化成一维的一个向量,全连接层的每一个节点都与上一层每个节点连接,是把前一层的输出特征都综合起来,所以该层的权值参数是 ...