https://www.bilibili.com/video/av9770302/?p=15 前面说了auto-encoder,VAE可以用于生成 VAE的问题, AE的训练是让输入输出尽 ...
期刊:IEEE SIGNAL PROCESSING LETTERS 作者:Weixuan Tang, Shunquan Tan, Bin Li, Jiwu Huang Notes:早期将GAN用于steganography的众多算法中,个人认为这篇 年的论文是把steganography的逻辑在GAN框架中实现的最精致的。为什么说精致,因为论文中整个算法逻辑很清晰 有一定的创新点 结构紧凑。相比 ...
2020-05-03 19:34 1 679 推荐指数:
https://www.bilibili.com/video/av9770302/?p=15 前面说了auto-encoder,VAE可以用于生成 VAE的问题, AE的训练是让输入输出尽 ...
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network 2016.10.23 摘要:本文针对传统超分辨方法中存在的结果过于平滑的问题,提出了结合最新的对抗网络 ...
Duplex Generative Adversarial Network for Unsupervised Domain Adaptation 域自适应尝试将从源域获得的知识传送到目标域,即测试数据所在的域。主要的挑战在于源域和目标域之间的分布差异。大多数现有工作通常通过最小化 ...
(perceptual loss) 和对抗损失(adversarial loss). 网络结构: 其 ...
博客作者:凌逆战 论文地址:基于GAN的音频超分辨率 博客地址:https://www.cnblogs.com/LXP-Never/p/10874993.html 论文作者:Sefik E ...
生成对抗网络GAN(Generative Adversarial Network) 2014年Szegedy在研究神经网络的性质时,发现针对一个已经训练好的分类模型,将训练集中样本做一些细微的改变会导致模型给出一个错误的分类结果,这种虽然发生扰动但是人眼可能识别不出来 ...
Semi-Supervised Learning with Generative Adversarial Networks 引言:本文将产生式对抗网络(GAN)拓展到半监督学习,通过强制判别器来输出类别标签。我们在一个数据集上训练一个产生式模型 G 以及 一个判别器 D,输入 ...