在限制对比度自适应直方图均衡化算法原理、实现及效果一文中针对全局直方图均衡化的一些缺点,提出了分块的自适应均衡化技术,很好的克服了全局直方图均衡化的一些缺点,对于图像增强也有着显著的作用,我们稍微回顾下CLAHE的算法流程,简单的可以用下面的过程描述: 原始的直方图 ...
在限制对比度自适应直方图均衡化算法原理、实现及效果一文中针对全局直方图均衡化的一些缺点,提出了分块的自适应均衡化技术,很好的克服了全局直方图均衡化的一些缺点,对于图像增强也有着显著的作用,我们稍微回顾下CLAHE的算法流程,简单的可以用下面的过程描述: 原始的直方图 ...
通过灰度线性映射增强图像对比度 Halcon中如何通过灰度线性映射增强图片对比度呢?不急,我先讲点其他的。 如果你用过Photoshop,那么想必对增强图像的对比度很熟悉。在Photoshop中,我们对下面这张图执行“色阶”调整: 执行“色阶”调整:可以观察到图片的对比度明显 ...
在一些应用场景中,一些RGB图片直接转为灰度图片的效果很不好,原本不同的颜色很可能在转为灰度后区分度太小,而导致丢失了对比度信息。例如下面这副图片 直接转为灰度的结果: 可以发现,基本上无法区分这两种颜色了。 然后,由于一般较大原图像颜色信息是冗余 ...
自动色阶、自动对比度以及直方图均衡这三个算法虽然很普通,也很简单,但是在实际应用中有着非常高的使用率,特别是在修图中,很多设计师打开一幅图,首先的的操作就是Shift+Ctrl+L(自动色阶)。在原理实现上,他们都属于基于直方图统计方面的算法,执行效率都非常之高。我在调整图像- 自动对比度 ...
·对于部分图像,会出现整体较暗或较亮的情况,这是由于图片的灰度值范围较小,即对比度低。实际应用中,通过绘制图片的灰度直方图,可以很明显的判断图片的灰度值分布,区分其对比度高低。对于对比度较低的图片,可以通过一定的算法来增强其对比度。常用的方法有线性变换,伽马变换,直方图均衡化,局部自适应直方图 ...
图像对比度增强的方法可以分成两类:一类是直接对比度增强方法;另一类是间接对比度增强方法。 直方图拉伸和直方图均衡化是两种最常见的间接对比度增强方法。 直方图拉伸是通过对比度拉伸对直方图进行调整,从而“扩大”前景和背景灰度的差别,以达到增强对比度的目的,这种方法可以利用线性或非线性的方法来 ...
直方图均匀化简介 从这张未经处理的灰度图可以看出,其灰度集中在非常小的一个范围内。这就导致了图片的强弱对比不强烈。 直方图均衡化的目的,就是把原始的直方图变换为在整个灰度范围(0~255)内均匀分布的形式,从而增加像素灰度值的动态范围,达到增强图像整体对比度的效果。 直方图 ...
的对比度比I有所增加;如果0<a<1,则O的对比度比I有所减小。 而b值的改变,影响的是输出图像的亮度 ...