loss与准确率的关系 目录 背景 定义 关系 目录 在进行一项分类任务训练时,观察到验证集上的accuracy增加的同时,loss也在增加,因此产生了一些疑惑,对accuracy和loss之间的关系进行探索。 定义 在理解他们的关系之前,先来回顾一下什么是交叉熵 ...
目录 背景 定义 关系 背景 在进行一项分类任务训练时,观察到验证集上的accuracy增加的同时,loss也在增加,因此产生了一些疑惑,对accuracy和loss之间的关系进行探索。 定义 在理解他们的关系之前,先来回顾一下什么是交叉熵损失和准确率。交叉熵损失函数:交叉熵输出的是正确标签的似然对数,和准确率有一定的关系,但是取值范围更大。交叉熵损失公式: 其中 widehat y i 为预测 ...
2020-04-25 10:35 1 2992 推荐指数:
loss与准确率的关系 目录 背景 定义 关系 目录 在进行一项分类任务训练时,观察到验证集上的accuracy增加的同时,loss也在增加,因此产生了一些疑惑,对accuracy和loss之间的关系进行探索。 定义 在理解他们的关系之前,先来回顾一下什么是交叉熵 ...
一、概述 召回率、准确率、精确率、F值的作用 在机器学习、数据挖掘、推荐系统完成建模之后,需要对模型的效果做评价。 二、定义 首先给出一个大家经常见到的图: 详细定义 准确率(accuracy)=(TP+TN)/(TP+FN+FP+TN) 通俗解释: 在所有样本中 ...
一、例子 二、整体代码 ...
一、Keras五大功能 二、评估指标用法 有一个现成的准确度的meter就是 m e t r i c s . A c c u r a c y ( ) metrics.Accuracy()metrics.Accuracy()。如果只是简单的求一个平均值的话,有一个 ...
yu Code 15 Comments 机器学习(ML),自然语言处理(NLP),信息检索(IR)等领域,评估(Evaluation)是一个必要的 工作,而其评价指标往往有如下几点:准确率(Accuracy),精确率(Precision),召回率(Recall ...
自然语言处理(ML),机器学习(NLP),信息检索(IR)等领域,评估(evaluation)是一个必要的工作,而其评价指标往往有如下几点:准确率(accuracy),精确率(Precision),召回率(Recall)和F1-Measure。 本文将简单介绍其中几个概念。中文中这几个评价指标 ...
转载自:机器学习中的Accuracy和Precision的区别 数量 对于一个二分类问题,我们定义如下指标: :True Positive,即正确预测出的正样本个数:False Positive,即错误预测出的正样本个数(本来是负样本,被我们预测成了正样本):True ...
召回率表示的是样本中的某类样本有多少被正确预测了。比如对与一个分类模型,A类样本包含A0个样本,预测模型分类结果是A类样本中有A1个正样本和A2个其他样本,那么该分类模型的召回率就是 A1/A0,其中 A1+A2=A0 准确率表示的是所有分类中被正确分类的样本比例,比如对于一个分类模型 ...