目录 一、缺失值 1 缺失值类型 2 缺失值的认定 3 查看缺失情况 4 处理方法(1)——缺失值填充 简单填充df.fillna() 插值法填充 5 处理方法(2)——直接删除 ...
. 数据缺失分类 行记录的缺失,又称数据记录丢失 列值的缺失,即数据记录中某些列 变量 的值空缺 . 数据列缺失的处理思路 . 丢弃 缺失值所在的行或者列整体删除,减少缺失数据对总体的影响 整行删除的前提:缺失行占总体的比例非常低,一般在 以内 整列删除 对应变量删除 的前提:缺失值占整列的比例较高,一般在 左右 注意,在大量的数据记录不完整或者缺失值的特征表现较明显的情况下,不采用此方法 . ...
2020-04-21 22:00 0 673 推荐指数:
目录 一、缺失值 1 缺失值类型 2 缺失值的认定 3 查看缺失情况 4 处理方法(1)——缺失值填充 简单填充df.fillna() 插值法填充 5 处理方法(2)——直接删除 ...
在数据建模过程中,针对入模的数据需做数据清洗,特别针对缺失数据。 缺失数据比较多的情况下,可以考虑直接删除;缺失数据较少的情况下,可对数据进行填充。 此时,fillna() 则派上用场。语法为: 创建测试数据框: 用0填充 用每列特征的均值填充 ...
R语言给我们提供了一些有用的函数来处理数据的缺失值,让我们先来看看什么是数据的缺失值吧! 一.数据的缺失值 在R语言当中数据的缺失值用NA来表示,有的时候我们会发现在一个数据集当中的某些值显示的是NA,那么就说明这个值是缺失的值了,那么缺失值是否可以用来做运算呢? 比如说我们建立一个第一个 ...
缺失值处理包括两个步骤,即缺失数据的识别和缺失值处理。在R语言总缺失值以NA表示,可以使用函数is.na()判断缺失值是否存在,函数complete.cases()可识别样本数据是否完整从而判断缺失情况。缺失值处理常用方法有删除法、替换法、插补法。 (1)删除法:可分为删除 ...
数据清洗之数据预处理 摩托车的销售情况数据 Condition:摩托车新旧情况(new:新的 和used:使用过的) Condition_Desc:对当前状况的描述 ...
https://blog.csdn.net/wanght89/article/details/78188591?locationNum=4&fps=1 ...
数据挖掘中常用的数据清洗方法有哪些? 原文链接:https://www.zhihu.com/question/22077960 从两个角度看,数据清洗一是为了解决数据质量问题,,二是让数据更适合做挖掘。不同的目的下分不同的情况,也都有相应的解决方式和方法。 包括缺失值处理、异常 ...
07.数据清洗 数据清洗概念 之前已经讲过,数据分析的过程是这样的。 之前我们学习的一系列python模块,比如BeautifulSoup、Xpath、selenium等模块,都是属于数据清洗的范畴;matplotlib模块属于数据可视化模块。numpy ...