原文:自己动手实现深度学习框架-4 使用交叉熵损失函数支持分类任务

代码仓库: https: github.com brandonlyg cute dl 目标 增加交叉熵损失函数,使框架能够支持分类任务的模型。 构建一个MLP模型, 在mnist数据集上执行分类任务准确率达到 。 实现交叉熵损失函数 数学原理 分解交叉熵损失函数 交叉熵损失函数把模型的输出值当成一个离散随机变量的分布列。 设模型的输出为: hat Y f X , 其中 f X 表示模型。 hat ...

2020-04-21 17:04 4 787 推荐指数:

查看详情

机器学习之路:tensorflow 深度学习分类问题的损失函数 交叉

经典的损失函数----交叉 1 交叉:   分类问题中使用比较广泛的一种损失函数, 它刻画两个概率分布之间的距离   给定两个概率分布p和q, 交叉为:  H(p, q) = -∑ p(x) log q(x)   当事件总数是一定的时候, 概率函数满足: 任意x p(X ...

Thu Jun 07 00:02:00 CST 2018 0 1934
深度学习-交叉损失

SoftMax回归 对于MNIST中的每个图像都是零到九之间的写数字。所以给定的图像只能有十个可能的东西。我们希望能够看到一个图像,并给出它是每个数字的概率。 例如,我们的模型可能会看到一个九分之一的图片,80%的人肯定它是一个九,但是给它一个5%的几率是八分之一(因为顶级循环),并有一点 ...

Wed Jul 24 19:51:00 CST 2019 0 922
深度学习中,交叉损失函数为什么优于均方差损失函数

深度学习中,交叉损失函数为什么优于均方差损失函数 一、总结 一句话总结: A)、原因在于交叉函数配合输出层的激活函数如sigmoid或softmax函数能更快地加速深度学习的训练速度 B)、因为反向传播过程中交叉损失函数得到的结果更加简洁,无论sigmoid或softmax,可以定 ...

Wed Sep 23 04:23:00 CST 2020 0 680
交叉损失函数

交叉损失函数 的本质是香浓信息量\(\log(\frac{1}{p})\)的期望 既然的本质是香浓信息量\(\log(\frac{1}{p})\)的期望,那么便有 \[H(p)=E[p_i\times\log(\frac{1}{p_i})]=\sum p_i\times ...

Fri Apr 28 23:39:00 CST 2017 1 6494
交叉损失函数

1. Cross entropy 交叉损失函数用于二分类损失函数的计算,其公式为: 其中y为真值,y'为估计值.当真值y为1时, 函数图形: 可见此时y'越接近1损失函数的值越小,越接近0损失函数的值越大. 当真值y为0时, 函数图形: 可见此时y'越接近0损失 ...

Mon Jul 29 01:26:00 CST 2019 0 5788
交叉损失函数

交叉损失函数的概念和理解 觉得有用的话,欢迎一起讨论相互学习~ 公式 \[ loss =\sum_{i}{(y_{i} \cdot log(y\_predicted_{i}) +(1-y_{i}) \cdot log(1-y\_predicted_{i}) )} \] 定义 ...

Sat Aug 26 23:15:00 CST 2017 2 8431
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM