到某一个或几个Reduce 上的数据远高于平均值 大表与大表,但是分 ...
什么是数据倾斜 Data Skew 数据倾斜是指在原本应该并行处理的数据集中,某一部分的数据显著多于其它部分,从而使得该部分数据的处理速度成为整个数据集处理的瓶颈。 假设数据分布不均匀,某个key对应几十万条数据,其他key对应几百条或几十条数据,那么在处理数据的时候,大量相同的key会被分配 partition 到同一个分区里,造成 一个人累死,其他人闲死 的情况,具体表现在:有些任务很快就处理 ...
2020-04-22 15:36 0 3720 推荐指数:
到某一个或几个Reduce 上的数据远高于平均值 大表与大表,但是分 ...
何谓数据倾斜?数据倾斜指的是,并行处理的数据集 中,某一部分(如Spark的一个Partition)的数据显著多于其它部分,从而使得该部分的处理速度成为整个数据集处理的瓶颈。 表现为整体任务基本完成,但仍有少量子任务的reduce还在运行。 数据倾斜的原因: 1.join 一个表较小 ...
数据倾斜是进行大数据计算时常见的问题。主要分为map端倾斜和reduce端倾斜,map端倾斜主要是因为输入文件大小不均匀导致,reduce端主要是partition不均匀导致。 在hive中遇到数据倾斜的解决办法: 一、倾斜原因:map端缓慢,输入数据文件多,大小不均匀 当出现小文件过多 ...
转载自:https://blog.csdn.net/jin6872115/article/details/79878391 1、什么是数据倾斜? 由于数据分布不均匀,造成数据大量的集中到一点,造成数据热点 2、主要表现:任务进度长时间维持在 99%或者 100%的附近,查看任务监控页面 ...
Spark数据倾斜 产生原因 首先RDD的逻辑其实时表示一个对象集合。在物理执行期间,RDD会被分为一系列的分区,每个分区都是整个数据集的子集。当spark调度并运行任务的时候,Spark会为每一个分区中的数据创建一个任务。大部分的任务处理的数据量差不多,但是有少部分 ...
MapReduce简介MapReduce是面向大数据并行处理的计算模型、框架和平台,它隐含了以下三层含义: 1)MapReduce是一个基于集群的高性能并行计算平台(Cluster Infrastructure)。它允许用市场上普通的商用服务器构成一个包含数十、数百至数千个节点的分布和并行计算 ...
等。 为何要处理数据倾斜(Data Skew) 什么是数据倾斜 对Spark/Hadoop这样的大数 ...
本文转发自Jason’s Blog,原文链接 http://www.jasongj.com/spark/skew/ 摘要 本文结合实例详细阐明了Spark数据倾斜的几种场景以及对应的解决方案,包括避免数据源倾斜,调整并行度,使用自定义Partitioner,使用Map侧Join代替Reduce ...