基本的卷积神经网络 提取前两层网络结构 提取所有的卷积层网络 打印卷积层的网络名字 对权重参数进行初始化操作 ...
基本的卷积神经网络 提取前两层网络结构 提取所有的卷积层网络 打印卷积层的网络名字 对权重参数进行初始化操作 ...
有时间再写。 ...
在定义网络时,pythorch会自己初始化参数,但也可以自己初始化,详见官方实现 ...
本文内容:1. Xavier 初始化2. nn.init 中各种初始化函数3. He 初始化 torch.init https://pytorch.org/docs/stable/nn.html#torch-nn-init 1. 均匀分布torch.nn.init ...
利用pytorch 定义自己的网络模型时,需要继承toch.nn.Module 基类。 基类中有parameters()、modules()、children()等方法 看一下parameters方法 看一下modules()方法 看一下 ...
在神经网络中,参数默认是进行随机初始化的。如果不设置的话每次训练时的初始化都是随机的,导致结果不确定。如果设置初始化,则每次初始化都是固定的。 ...
初始化参数的方法 nn.Module模块对于参数进行了内置的较为合理的初始化方式,当我们使用nn.Parameter时,初始化就很重要,而且我们也可以指定代替内置初始化的方式对nn.Module模块进行补充。 除了之前的.data进行赋值,或者.data.初始化方式外,我们可以使用 ...
1.使用apply() 举例说明: Encoder :设计的编码其模型 weights_init(): 用来初始化模型 model.apply():实现初始化 返回: 2.直接在定义网络时定义 然后调用即可 ...