机器学习模型常用Docker部署,而如何对Docker部署的模型进行管理呢?工业界的解决方案是使用Kubernetes来管理、编排容器。Kubernetes的理论知识不是本文讨论的重点,这里不再赘述,有关Kubernetes的优点读者可自行Google。笔者整理的Kubernetes入门系列 ...
前传: 相信很多人和我一样,在试图安装tensorflow serving的时候,翻遍了网上的博客和官网文档,安装都是以失败而告终,我也是一样,这个问题折磨了我两个星期之久,都快放弃了。幸运的是在同事的建议下,我采用了一种迂回的策略安装成功了。 我们采用的策略是: pull一个已经安装好了tensorflow serving的docker镜像,替换它自带的一些模型为我们自己的模型。 步骤: 拉取带 ...
2020-04-20 13:35 0 644 推荐指数:
机器学习模型常用Docker部署,而如何对Docker部署的模型进行管理呢?工业界的解决方案是使用Kubernetes来管理、编排容器。Kubernetes的理论知识不是本文讨论的重点,这里不再赘述,有关Kubernetes的优点读者可自行Google。笔者整理的Kubernetes入门系列 ...
Using TensorFlow Serving with Docker 1.Ubuntu16.04下安装docker ce 1-1:卸载旧版本的docker sudo apt-get remove docker docker-engine docker.io 1-2 ...
http://blog.csdn.net/wangjian1204/article/details/68928656 本文转载自:https://zhuanlan.zhihu.com/p/23361413 ,原题:TensorFlow Serving 尝尝鲜 2016年,机器学习 ...
\ tensorflow/serving 运行后我们要仔细看看日志,有没有报错,如果有报错, ...
拉去tensorflow srving 镜像 代码里新增tensorflow 配置代码 启动服务 访问服务 预测结果 遗留问题 tensorflow serving 保存的时侯,只保存了,模型graphy相关的操作。数据预处理操作,不在serving服务中 ...
github博客传送门 csdn博客传送门 整个部署的项目结构: 首先保存(keras或tensorflow)网络模型为.h5格式 有了模型.h5格式之后,导出模型为可以部署的结构: 执行完上述代码之后,没出错的情况下就会生成以下可以部署的文件 接着我们启动 ...
部署多个模型 (1)直接部署两个模型faster-rcnn与retina,构建代码的文件夹。 文件夹结构为: model.config的内容为: (2)启动docker sudo docker run -p 8501:8501 -p 8500:8500 --mount type ...
/82107610 按照上述教程配置好相关文件之后(模型是下面tensorflow-serving中产生 ...