一、Seq2Seq简介 seq2seq 是一个Encoder–Decoder 结构的网络,它的输入是一个序列,输出也是一个序列。Encoder 中将一个可变长度的信号序列变为固定长度的向量表达,Decoder 将这个固定长度的向量变成可变长度的目标的信号序列。 很多自然语言处理任务 ...
基本原理: Encoder decoder框架为文本处理领域的一种非常流行的框架,这项技术突破了传统的输入大小固定的问题,将深度神经网络模型用到了自然语言处理的相关任务之中。其不仅可以用在对话生成任务中,同样应用在自然语言处理的其他领域,如机器翻译 文本摘要 句法分析等任务中。 Seq seq模型最早在 年,由Ilya Sutskever等 提出。当时主要应用在机器翻译的相关问题中,其可以理解为一 ...
2020-04-19 23:25 0 595 推荐指数:
一、Seq2Seq简介 seq2seq 是一个Encoder–Decoder 结构的网络,它的输入是一个序列,输出也是一个序列。Encoder 中将一个可变长度的信号序列变为固定长度的向量表达,Decoder 将这个固定长度的向量变成可变长度的目标的信号序列。 很多自然语言处理任务 ...
网络输入是一个序列,一句话,图像的某一行,都可以认为是一个序列, 网络输出的也是一个序列。 RNN的架构 我们把所有的输出o连起来,就成了一个序列。 rnn有一些缺点,lstm可以加入一个 ...
2019-09-10 19:29:26 问题描述:什么是Seq2Seq模型?Seq2Seq模型在解码时有哪些常用办法? 问题求解: Seq2Seq模型是将一个序列信号,通过编码解码生成一个新的序列信号,通常用于机器翻译、语音识别、自动对话等任务。在Seq2Seq模型提出之前,深度学习网 ...
目录 背景介绍 双向解码 基本思路 数学描述 模型实现 训练方案 双向束搜索 代码参考 思考分析 文章小结 在文章《玩转Keras之seq2seq自动生成标题》中我们已经 ...
v1.0中 tensorflow渐渐废弃了老的非dynamic的seq2seq接口,已经放到 tf.contrib.legacy_seq2seq目录下面。 tf.contrib.seq2seq下面的实现都是dynamic seq2seq接口。 按照google的rd说法下个月将会给出更加完 ...
seq2seq 是一个 Encoder–Decoder 结构的网络,它的输入是一个序列,输出也是一个序列, Encoder 中将一个可变长度的信号序列变为固定长度的向量表达,Decoder 将这个固定长度的向量变成可变长度的目标的信号序列。 这个结构最重要的地方在于输入序列和输出序列 ...
seq2seq模型详解 原创 2017年12月25日 09:41:04 标签: seq2seq / 自然语言 / 机器人 在李纪为博士的毕业论文中提到,基于生成的闲聊机器人 ...
github链接 注:1.2最新版本不兼容,用命令pip3 install tensorflow==1.0.0 在translate.py文件里,是调用各种函数;在seq2seq_model.py文件里,是定义了这个model的具体输入、输出、中间参数是怎样的init,以及获取每个epoch ...