一、朴素贝叶斯分类器的构建 二、数据集的获取 三、加载数据与数据转换 四、模型拟合、预测与精度 单次训练 多次训练,精确度没有太多的改变,说明朴素贝叶斯分类器只要很少的样本就能学习到大部分 ...
该项目的目的是建立一个有关于人脸的二分类器。 steps : . Load the data . Define a Convolutional Neural Network . Train the Model . Evaluate the Performance of our trained model on a dataset 加载数据集 主要内容:加载和预处理。 预处理:使用pytorch的t ...
2020-04-17 15:05 0 798 推荐指数:
一、朴素贝叶斯分类器的构建 二、数据集的获取 三、加载数据与数据转换 四、模型拟合、预测与精度 单次训练 多次训练,精确度没有太多的改变,说明朴素贝叶斯分类器只要很少的样本就能学习到大部分 ...
我的这篇博客: softmax手动实现 是从零实现softmax回归,以熟悉PyTorch和相关函数的定义。 现在利用PyTorch来实现softmax分类器, 加深印象。 数据加载 FashionMNIST数据集的使用可以参考我的上一篇博客 得到的 train_iter ...
使用pytorch快速搭建神经网络实现二分类任务(包含示例) Introduce 上一篇学习笔记介绍了不使用pytorch包装好的神经网络框架实现logistic回归模型,并且根据autograd实现了神经网络参数更新。 本文介绍利用pytorch快速搭建神经网络。即利用torch.nn ...
引言 很多分类器在数学解释时都是以二分类为例,其数学推导不适用于多分类,模型本身也只能用于二分类,如SVM,Adaboost , 但是现实中很多问题是多分类的,那这些模型还能用吗 二分类 to 多分类 更改数学原理 改变这些模型的原理,重新推导数学公式,然后代码实现。 这种 ...
二分类 分类问题是机器学习中非常重要的一个课题。现实生活中有很多实际的二分类场景,如对于借贷问题,我们会根据某个人的收入、存款、职业、年龄等因素进行分析,判断是否进行借贷;对于一封邮件,根据邮件内容判断该邮件是否属于垃圾邮件。 图1-1 分类示意图 回归作为分类的缺陷 由于回归 ...