的损失函数,本篇为tensorflow自定义损失函数。 (一)tensorflow内置的四个损 ...
损失算法的选取 损失函数的选取取决于输入标签数据的类型: 如果输入的是实数 无界的值,损失函数使用平方差 如果输入标签是位矢量 分类标志 ,使用交叉熵会更适合。 均值平方差 在TensorFlow没有单独的MSE函数,不过由于公式比较简单,往往开发者都会自己组合,而且也可以写出n种写法,例如: MSE tf.reduce mean tf.pow tf.sub logits, outputs , . ...
2020-04-15 12:45 0 596 推荐指数:
的损失函数,本篇为tensorflow自定义损失函数。 (一)tensorflow内置的四个损 ...
Fork版本项目地址:SSD 一、损失函数介绍 SSD损失函数分为两个部分:对应搜索框的位置loss(loc)和类别置信度loss(conf)。(搜索框指网络生成的网格) 详细的说明如下: i指代搜索框序号,j指代真实框序号,p指代类别序号,p=0表示背景, 中取1表示此时第i个搜索框 ...
Hinge损失函数主要用来评估支持向量机算法,但有时也用来评估神经网络算法。下面的示例中是计算两个目标类(-1,1)之间的损失。下面的代码中,使用目标值1,所以预测值离1越近,损失函数值越小: 两类交叉函数熵损失函数(Cross-entropy loss)有时也作为逻辑损失函数 ...
这个自定义损失函数的背景:(一般回归用的损失函数是MSE, 但要看实际遇到的情况而有所改变) 我们现在想要做一个回归,来预估某个商品的销量,现在我们知道,一件商品的成本是1元,售价是10元。 如果我们用均方差来算的话,如果预估多一个,则损失一块钱,预估少一个,则损失9元钱(少赚 ...
tensorflow2自定义损失函数 一、总结 一句话总结: 直接定义函数,然后在compile时传给loss即可 二、tensorflow2自定义损失函数 转自或参考:tensorflow2.x学习笔记十七:自定义网络层、模型以及损失函数https ...
一般来说,监督学习的目标函数由损失函数和正则化项组成。(Objective = Loss + Regularization) 对于keras模型,目标函数中的正则化项一般在各层中指定,例如使用Dense的 kernel_regularizer 和 bias_regularizer等参数指定权重 ...
1.损失函数---------经典损失函数--------交叉熵:交叉熵刻画了两个概率分布之间的距离,它是分类问题中使用比较广的一种损失函数。通过q来表示p的交叉熵为: Softmax将神经网络前向传播得到的结果变成概率分布,原始神经网络的输出被用作置信度来生成新的输出,而新的输出满足 ...
平方损失函数求导后,偏导太小,迭代更新慢,所以考虑用交叉熵损失函数(注意标记值和预测值不能写反了)(标记值为0或1,对0取对数是不存在的额): 交叉熵损失函数满足作为损失函数的两大规则:非负性,单调一致性 ...