原文:Python实现PCA降维

PCA算法 主成分分析 Principal Component Analysis,PCA 是最常用的一种降维方法,通常用于高维数据集的探索与可视化,还可以用作数据压缩和预处理等。PCA可以把具有相关性的高维变量合成为线性无关的低维变量,称为主成分。主成分能够尽可能保留原始数据的信息。PCA的计算涉及到对协方差矩阵的理解,这篇博客提供了协方差矩阵的相关内容。PCA的算法过程: 直接用numpy实现P ...

2020-04-14 20:23 2 3125 推荐指数:

查看详情

PCA降维的原理、方法、以及python实现

参考:菜菜的sklearn教学之降维算法.pdf!! PCA(主成分分析法) 1. PCA(最大化方差定义或者最小化投影误差定义)是一种无监督算法,也就是我们不需要标签也能对数据做降维,这就使得其应用范围更加广泛了。那么PCA的核心思想是什么呢? 例如D维变量构成的数据集,PCA的目标 ...

Thu Nov 14 01:20:00 CST 2019 0 2048
Java中实现PCA降维

float[] vector = docvector.getElementArray(); FloatMatrix d = new FloatMatrix(vector); FloatMatrix result = PCA.dimensionReduction(d, 10); ...

Mon Nov 05 22:13:00 CST 2018 0 941
PCA降维

有很多,而且分为线性降维和非线性降维,本篇文章主要讲解线性降维中的主成分分析法(PCA)降维。顾名思义,就 ...

Wed Aug 07 05:15:00 CST 2019 0 1092
PCA降维

转载请声明出处:http://blog.csdn.net/zhongkelee/article/details/44064401 一、PCA简介 1. 相关背景 上完陈恩红老师的《机器学习与知识发现》和季海波老师的《矩阵代数》两门课之后,颇有体会。最近在做主成分分析和奇异值分解 ...

Mon Apr 02 05:42:00 CST 2018 0 7289
PCA算法学习_1(OpenCV中PCA实现人脸降维)

  前言:   PCA是大家经常用来减少数据集的维数,同时保留数据集中对方差贡献最大的特征来达到简化数据集的目的。本文通过使用PCA来提取人脸中的特征脸这个例子,来熟悉下在oepncv中怎样使用PCA这个类。   开发环境 ...

Thu Sep 06 19:13:00 CST 2012 7 54779
关于PCA降维中遇到的python问题小结

一下在PCA,第一次接触这个名词还是在学习有关CNN算法时,一篇博客提到的数据输入层中,数据简单处理的几 ...

Wed May 29 20:58:00 CST 2019 0 786
python机器学习——PCA降维算法

背景与原理: PCA(主成分分析)是将一个数据的特征数量减少的同时尽可能保留最多信息的方法。所谓降维,就是在说对于一个$n$维数据集,其可以看做一个$n$维空间中的点集(或者向量集),而我们要把这个向量集投影到一个$k<n$维空间中,这样当然会导致信息损失,但是如果这个$k$维空间的基底 ...

Thu Mar 31 04:51:00 CST 2022 0 1719
【机器学习算法-python实现PCA 主成分分析、降维

1.背景 PCA(Principal Component Analysis),PAC的作用主要是减少数据集的维度,然后挑选出基本的特征。 PCA的主要思想是移动坐标轴,找到方差最大的方向上的特征值。什么叫方差最大的方向的特征值呢。就像下图 ...

Sun May 07 17:51:00 CST 2017 0 2144
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM