Alink漫谈(十三) :在线学习算法FTRL 之 具体实现 目录 Alink漫谈(十三) :在线学习算法FTRL 之 具体实现 0x00 摘要 0x01 回顾 0x02 在线训练 2.1 预置模型 ...
在线学习想要解决的问题 在线学习 it Online Learning 代表了一系列机器学习算法,特点是每来一个样本就能训练,能够根据线上反馈数据,实时快速地进行模型调整,使得模型及时反映线上的变化,提高线上预测的准确率。相比之下,传统的批处理方式需要一次性收集所有数据,新数据到来时重新训练的代价也很大,因而更新周期较长,可扩展性不高。 一般对于在线学习来说,我们致力于解决两个问题: 降低 reg ...
2020-04-13 19:42 1 5627 推荐指数:
Alink漫谈(十三) :在线学习算法FTRL 之 具体实现 目录 Alink漫谈(十三) :在线学习算法FTRL 之 具体实现 0x00 摘要 0x01 回顾 0x02 在线训练 2.1 预置模型 ...
在线最优化求解(Online Optimization)之五:FTRL 在上一篇博文中中我们从原理上定性比较了L1-FOBOS和L1-RDA在稀疏性上的表现。有实验证明,L1-FOBOS这一类基于梯度下降的方法有比较高的精度,但是L1-RDA却能在损失一定精度的情况下产生更好的稀疏性 ...
Alink漫谈(十二) :在线学习算法FTRL 之 整体设计 目录 Alink漫谈(十二) :在线学习算法FTRL 之 整体设计 0x00 摘要 0x01概念 1.1 逻辑回归 1.1.1 ...
转载请注明本文链接:http://www.cnblogs.com/EE-NovRain/p/3810737.html 现在做在线学习和CTR常常会用到逻辑回归( Logistic Regression),而传统的批量(batch)算法无法有效地处理超大规模的数据集和在线数据流 ...
FTRL由google工程师提出,在13的paper中给出了伪代码和实现细节,paper地址:http://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf 本文旨在算法的应用,推导和优化过程详见paper,推荐一篇博文 ...
FTRL(Follow The Regularized Leader)是一种优化方法,就如同SGD(Stochastic Gradient Descent)一样。这里直接给出用FTRL优化LR(Logistic Regression)的步骤: 其中$p_t=\sigma(X_t\cdot w ...
案例分析: 这个sql是用来查询出 c 表中有 h 表中无的记录,所以想到了用 left join 的特性(返回左边全部记录,右表不满足匹配条件的记录对应行返回 null)来满足需 ...
Online gradient descent(OGD) produces excellent prediction accuracy with a minimum of computing reso ...