平方损失函数求导后,偏导太小,迭代更新慢,所以考虑用交叉熵损失函数(注意标记值和预测值不能写反了)(标记值为0或1,对0取对数是不存在的额): 交叉熵损失函数满足作为损失函数的两大规则:非负性,单调一致性 ...
一般来说,监督学习的目标函数由损失函数和正则化项组成。 Objective Loss Regularization 对于keras模型,目标函数中的正则化项一般在各层中指定,例如使用Dense的 kernel regularizer 和 bias regularizer等参数指定权重使用l 或者l 正则化项,此外还可以用kernel constraint 和 bias constraint等参数约 ...
2020-04-13 10:44 16 3702 推荐指数:
平方损失函数求导后,偏导太小,迭代更新慢,所以考虑用交叉熵损失函数(注意标记值和预测值不能写反了)(标记值为0或1,对0取对数是不存在的额): 交叉熵损失函数满足作为损失函数的两大规则:非负性,单调一致性 ...
前文分别讲了tensorflow2.0中自定义Layer和自定义Model,本文将来讨论如何自定义损失函数。 (一)tensorflow2.0 - 自定义layer (二)tensorflow2.0 - 自定义Model (三)tensorflow2.0 - 自定义loss ...
.caret, .dropup > .btn > .caret { border-top-color: #000 !important ...
下面的范例使用TensorFlow的中阶API实现线性回归模型。 TensorFlow的中阶API主要包括各种模型层,损失函数,优化器,数据管道,特征列等等。 结果: 这里出现了一个问题,我是在谷歌colab上使用gpu进行运行的,会报这个错误,但当我切换成cpu ...
一,常用的内置评估指标 MeanSquaredError(平方差误差,用于回归,可以简写为MSE,函数形式为mse) MeanAbsoluteError (绝对值误差,用于回归,可以简写为MAE,函数形式为mae) MeanAbsolutePercentageError ...
最近对tensorflow十分感兴趣,所以想做一个系列来详细讲解tensorflow来。 本教程主要由tensorflow2.0官方教程的个人学习复现笔记整理而来,并借鉴了一些keras构造神经网络的方法,中文讲解,方便喜欢阅读中文教程的朋友,tensorflow官方教程:https ...
tf.keras的回调函数实际上是一个类,一般是在model.fit时作为参数指定,用于控制在训练过程开始或者在训练过程结束,在每个epoch训练开始或者训练结束,在每个batch训练开始或者训练结束时执行一些操作,例如收集一些日志信息,改变学习率等超参数,提前终止训练过程等等。 同样地,针对 ...