机器学习在各个领域都有广泛的应用,特别在数据分析领域有着深远的影响。决策树是机器学习中最基础且应用最广泛的算法模型。本文介绍了机器学习的相关概念、常见的算法分类和决策树模型及应用。通过一个决策树案例,着重从特征选择、剪枝等方面描述决策树的构建,讨论并研究决策树模型评估准则。最后基于 R 语言 ...
机器学习 算法原理详细推导与实现 七 :决策树算法 在之前的文章中,对于介绍的分类算法有逻辑回归算法和朴素贝叶斯算法,这类算法都是二分类的分类器,但是往往只实际问题中 y 不仅仅只有 , ,当出现一个新的类别 y 时,之前的分类器就不太适用,这里就要介绍一个叫做决策树的新算法,该算法对于多个目标的离散特征往往有比较好的分类效果,用以解决 x 是离散型的数据,这是判别模型,也是一个生成学习算法。 ...
2020-08-22 08:23 0 728 推荐指数:
机器学习在各个领域都有广泛的应用,特别在数据分析领域有着深远的影响。决策树是机器学习中最基础且应用最广泛的算法模型。本文介绍了机器学习的相关概念、常见的算法分类和决策树模型及应用。通过一个决策树案例,着重从特征选择、剪枝等方面描述决策树的构建,讨论并研究决策树模型评估准则。最后基于 R 语言 ...
下表为是否适合打垒球的决策表,预测E= {天气=晴,温度=适中,湿度=正常,风速=弱} 的场合,是否合适中打垒球。 天气 温度 湿度 风速 活动 晴 炎热 ...
本节使用的算法称为ID3,另一个决策树构造算法CART以后讲解。 一、概述 我们经常使用决策树处理分类问题,它的过程类似二十个问题的游戏:参与游戏的一方在脑海里想某个事物,其他参与者向他提出问题,只允许提20个问 题,问题的答案也只能用对或错回答。问问题的人通过推断分解,逐步缩小 ...
机器学习算法及代码实现–决策树 1、决策树 决策树算法的核心在于决策树的构建,每次选择让整体数据香农熵(描述数据的混乱程度)减小最多的特征,使用其特征值对数据进行划分,每次消耗一个特征,不断迭代分类,直到所有特征消耗完(选择剩下数据中出现次数最多的类别作为这堆数据的类别 ...
上一篇介绍了决策树之分类树构造的几种方法,本文主要介绍使用CART算法构建回归树及剪枝算法实现。主要包括以下内容: 1、CART回归树的介绍 2、二元切分的实现 3、总方差法划分特征 4、回归树的构建 5、回归树的测试与应用 6、剪枝算法 一、CART回归树的介绍 回归树与分类树 ...
)。 本文根据最近学习机器学习书籍 网络文章的情况,特将一些学习思路做了归纳整理,详情如下.如有不当之处,请各 ...
【机器学习】算法原理详细推导与实现(二):逻辑回归 在上一篇算法中,线性回归实际上是 连续型 的结果,即 \(y\in R\) ,而逻辑回归的 \(y\) 是离散型,只能取两个值 \(y\in \{0,1\}\),这可以用来处理一些分类的问题。 logistic函数 我们可能会遇到一些分类 ...
【机器学习】算法原理详细推导与实现(一):线性回归 今天我们这里要讲第一个有监督学习算法,他可以用于一个回归任务,这个算法叫做 线性回归 房价预测 假设存在如下 m 组房价数据: 面积(m^2) 价格(万元) 82.35 ...