原文:matlab实现梯度下降法(Gradient Descent)的一个例子

在此记录使用matlab作梯度下降法 GD 求函数极值的一个例子: 问题设定: . 我们有一个 n 个数据点,每个数据点是一个 d 维的向量,向量组成一个data矩阵 mathbf X in mathbb R n times d ,这是我们的输入特征矩阵。 . 我们有一个响应的响应向量 mathbf y in mathbb R n 。 . 我们将使用线性模型来fit上述数据。因此我们将优化问题形 ...

2020-04-06 09:56 0 5046 推荐指数:

查看详情

梯度下降Gradient descent

梯度下降Gradient descent) 在有监督学习中,我们通常会构造一个损失函数来衡量实际输出和训练标签间的差异。通过不断更新参数,来使损失函数的值尽可能的小。梯度下降就是用来计算如何更新参数使得损失函数的值达到最小值(可能是局部最小或者全局最小)。 梯度下降计算流程 假设 ...

Sat Aug 18 03:38:00 CST 2018 0 1465
梯度下降Gradient Descent

  转载请注明出处:http://www.cnblogs.com/Peyton-Li/   在求解机器学习算法的优化问题时,梯度下降是经常采用的方法之一。   梯度下降不一定能够找到全局最优解,有可能是一个局部最优解。但如果损失函数是凸函数,梯度下降法得到的一定是全局最优解 ...

Mon Sep 18 03:57:00 CST 2017 0 1160
梯度下降法 matlab实现

x1和x2的偏导数,即下降的方向 % - 4*x1 - 2*x2 - 1% 1 - 2*x2 - 2 ...

Tue Oct 01 21:02:00 CST 2019 0 550
梯度下降Gradient Descent)小结

    在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。这里就对梯度下降法一个完整的总结。 1. 梯度     在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式 ...

Wed May 03 23:56:00 CST 2017 0 12344
梯度下降Gradient Descent)小结

曾为培训讲师,由于涉及公司版权问题,现文章内容全部重写,地址为https://www.cnblogs.com/nickchen121/p/11686958.html。 更新、更全的Python相关更新 ...

Sat Jul 20 02:03:00 CST 2019 0 525
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM