精度评定中的准确率(Precision)和召回率(Recall) 在模式识别中,我们经常会使用到一些指标对目标识别或者影像分类的结果进行评价。 假设我们需要将一个样本集分类为苹果和非苹果两类,那么分类结果有四种情况: 第一种情况:True Positive,本来就是苹果被分类成苹果 ...
NG OK检测到 A B未检测到 C D 检出率 召回率 R:用检测到的NG数目作为分子,所有NG总数作为分母,即R A A C 准确率P:用检测到的NG数目作为分子,所有检测到的总数作为分母 即P A A B . n 是物体总数,设为 d 是被检测出来的NG数目,设为 k 错检数目,在d中实际上是OK的数量,设为 b 漏检数目,在n d中存在NG的数量,设为 检出率R是发现的实际NG数 d k ...
2020-04-05 10:19 0 4146 推荐指数:
精度评定中的准确率(Precision)和召回率(Recall) 在模式识别中,我们经常会使用到一些指标对目标识别或者影像分类的结果进行评价。 假设我们需要将一个样本集分类为苹果和非苹果两类,那么分类结果有四种情况: 第一种情况:True Positive,本来就是苹果被分类成苹果 ...
自然语言处理(ML),机器学习(NLP),信息检索(IR)等领域,评估(evaluation)是一个必要的工作,而其评价指标往往有如下几点:准确率(accuracy),精确率(Precision),召回率(Recall)和F1-Measure。 本文将简单介绍其中几个概念。中文中这几个评价指标 ...
转载自:机器学习中的Accuracy和Precision的区别 数量 对于一个二分类问题,我们定义如下指标: :True Positive,即正确预测出的正样本个数:False Positive,即错误预测出的正样本个数(本来是负样本,被我们预测成了正样本):True ...
yu Code 15 Comments 机器学习(ML),自然语言处理(NLP),信息检索(IR)等领域,评估(Evaluation)是一个必要的 工作,而其评价指标往往有如下几点:准确率(Accuracy),精确率(Precision),召回率(Recall ...
最近一直在做相关推荐方面的研究与应用工作,召回率与准确率这两个概念偶尔会遇到,知道意思,但是有时候要很清晰地向同学介绍则有点转不过弯来。 召回率和准确率是数据挖掘中预测、互联网中的搜索引擎等经常涉及的两个概念和指标。 召回率:Recall,又称“查全率”——还是查全率好记,也更能体现其实质意义 ...
TP: Ture Positive 把正的判断为正的数目 True Positive,判断正确,且判为了正,即正的预测为正的。 FN: False Negative 把正的错判为负的数目 False ...
1,这三个率能干啥? 这三个率能比较一个模型的好坏。 举个栗子,我有10个香蕉,1代表好香蕉,0代表坏香蕉,它们依次排列如下: 我让a模型帮我分出好香蕉,它给出这样的结果 好吧,让我们分析一下a模型干的活。 我们大致可以分为如下四种情况: 本来是好香 ...
在信息检索和自然语言处理中经常会使用这些参数,下面简单介绍如下: 准确率与召回率(Precision & Recall) 我们先看下面这张图来加深对概念的理解,然后再具体分析。其中,用P代表Precision,R代表Recall 一般来说,Precision 就是检索 ...