关联分析 概述 关联分析是数据挖掘的核心技术之一,其关联规则模型及数据挖掘算法是由 IBM 公司Almaden研究中心的R.Agrawal在1993年首先提出的,目的是从大量数据中发现项集之间的有趣关联或相互关系,其中最经典的Apriori算法在关联规则分析领域具有很大的影响力。 1.项集 ...
频繁项集: 最基本的模式是项集,它是指若干个项的集合。频繁模式是指数据集中频繁出现的项集 序列或子结构。频繁项集是指支持度大于等于最小支持度 min sup 的集合。其中支持度是指某个集合在所有事务中出现的频率。频繁项集的经典应用是购物篮模型。常用的频繁项集的评估标准有支持度,置信度和提升度 关联规则 三个 求频繁项集: 对于如表 . 所示的事务集合,设最小支持度计数为 ,采用Apriori算法求 ...
2020-04-04 13:42 0 1356 推荐指数:
关联分析 概述 关联分析是数据挖掘的核心技术之一,其关联规则模型及数据挖掘算法是由 IBM 公司Almaden研究中心的R.Agrawal在1993年首先提出的,目的是从大量数据中发现项集之间的有趣关联或相互关系,其中最经典的Apriori算法在关联规则分析领域具有很大的影响力。 1.项集 ...
购物篮分析 利用关联分析的方法可以发现联系如关联规则或频繁项集。 二元表示 每一行对应一个事务,每列对应一个项,项用二元变量表示 项在事务中出现比不出现更重要,因此项是非对称的的二元变量 ...
频繁项集的产生 格结构(lattice structure)常常用来表示所有可能的项集。 发现频繁项集的一个原始方法是确定格结构中每个候选项集的支持度。但是工作量比较大。另外有几种方法可以降低产生频繁项集的计算复杂度。 减少候选项集的数目。如先验(apriori)原理,是一种不用 ...
在数据挖掘的知识模式中,关联规则模式是比较重要的一种。关联规则的概念由Agrawal、Imielinski、Swami 提出,是数据中一种简单但很实用的规则。关联规则模式属于描述型模式,发现关联规则的算法属于无监督学习的方法。 一、关联规则的定义和属性 考察一些涉及许多物品的事务:事务 ...
数据挖掘算法-Apriori Algorithm(关联规则) Apriori algorithm是关联规则里一项基本算法。是由Rakesh Agrawal和Ramakrishnan Srikant两位博士在1994年提出的关联规则挖掘算法。关联规则的目的就是在一个数据集中找出项与项 ...
上一篇介绍了关联规则挖掘的一些基本概念和经典的Apriori算法,Aprori算法利用频繁集的两个特性,过滤了很多无关的集合,效率提高不少,但是我们发现Apriori算法是一个候选消除算法,每一次消除都需要扫描一次所有数据记录,造成整个算法在面临大数据集时显得无能为力。今天我们介绍一个新的算法 ...
1.关联规则分析的定义 关联分析(Association Analysis)用于发现隐藏在大型数据集中的令人感兴趣的联系。联系的表示方式一般为关联规则或频繁项集,例:{尿布}→{啤酒}。 2.关联规则分析的基本概念 项集:项的集合称为项集。一个包含k个数据项的项集就称为k−项集。 项集 ...
在各种数据挖掘算法中,关联规则挖掘算是比較重要的一种,尤其是受购物篮分析的影响,关联规则被应用到非常多实际业务中,本文对关联规则挖掘做一个小的总结。 首先,和聚类算法一样,关联规则挖掘属于无监督学习方法,它描写叙述的是在一个事物中物品间同一时候出现的规律的知识模式,现实生活中 ...