数据集: \[D=\lbrace (x_1,y_1),(x_2,y_2),...,(x_m,y_m)\rbrace \] 其中: \[x_i = (x_{i1};x_{i2};.. ...
分析:女性身高与体重的关系 .线性回归 packages import pandas as pd import numpy as np import matplotlib.pyplot as plt matplotlib inline import statsmodels.api as sm . 数据处理 data pd.read csv women.csv ,index col X data ...
2020-04-01 22:25 0 604 推荐指数:
数据集: \[D=\lbrace (x_1,y_1),(x_2,y_2),...,(x_m,y_m)\rbrace \] 其中: \[x_i = (x_{i1};x_{i2};.. ...
分析目的 分析数据 import pandas as pd i ...
说明:此文的第一部分参考了这里 用python进行线性回归分析非常方便,有现成的库可以使用比如:numpy.linalog.lstsq例子、scipy.stats.linregress例子、pandas.ols例子等。 不过本文使用sklearn库 ...
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 首先定义一个基本的回归类,作为各种回归方法的基类: 说明:初始化时传入两个参数,一个是迭代次数,另一个是学习率。initialize_weights()用于初始化权重 ...
Lasso回归于岭回归非常相似,它们的差别在于使用了不同的正则化项。最终都实现了约束参数从而防止过拟合的效果。但是Lasso之所以重要,还有另一个原因是:Lasso能够将一些作用比较小的特征的参数训练为0,从而获得稀疏解。也就是说用这种方法,在训练模型的过程中实现了降维(特征筛选)的目的 ...
python代码实现回归分析--线性回归 Aming 科技 ...
用梯度等于0的方式求得全局最优解: 上述方程与一般线性回归方程相比多了一项λI,其中I表示单位矩阵 ...
弹性网回归是lasso回归和岭回归的结合,其代价函数为: 若令,则 由此可知,弹性网的惩罚系数恰好为岭回归罚函数和Lasso罚函数的一个凸线性组合.当α=0时,弹性网回归即为岭回归;当 α=1时,弹性网回归即为Lasso回归.因此,弹性网回归兼有Lasso回归和岭回归的优点,既能达到 ...