我们可以根据经验或统计量对一些事情做出断言,问题是,如何判断这个断言的合理性?假设检验为我们提供了一种利用样本检验断言是否可靠的方法,能够让我们通过已有的证据验证断言是经过缜密的运算,还是毫无根据的瞎猜。 假设检验的背景 某个机器元件的质量标准是功率,功率越大越好,这个元件影响到公司 ...
假设检验实际上是用反证法做出非对即错的判断:先假定原假设是对的,然后将抽样数据代入相应的分布中去验证,观察原假设的数值是落在接受域还是拒绝域,由此做出是接受还是拒绝原假设的判断。 值得注意的是,不同于以往严格的数学证明,假设检验是建立在小概率事件原理的基础之上。由于小概率事件也有可能发生,因此并不能百分之百确定原假设一定不成立,也就是说,原假设也有判断错误的时候。 两种错误类型 假设检验有两种判断 ...
2020-03-27 16:34 0 1106 推荐指数:
我们可以根据经验或统计量对一些事情做出断言,问题是,如何判断这个断言的合理性?假设检验为我们提供了一种利用样本检验断言是否可靠的方法,能够让我们通过已有的证据验证断言是经过缜密的运算,还是毫无根据的瞎猜。 假设检验的背景 某个机器元件的质量标准是功率,功率越大越好,这个元件影响到公司 ...
> ####################5.2 > X<-c(159, 280, 101, 212, 224, 379, 179, 264, + 22 ...
一、基本概念 假设检验和参数估计解决的是不同的问题,参数估计是对参数$\theta$作出一个估计比如均值为$\mu$,而假设检验则是对估计的检验,比如均值真的是$\mu$嘛? 1. 定义 假设检验指的是使用统计学的方法判定某假设为真的概率. 通常假设检验包含以下四个步骤: 1.1 形成 ...
本文介绍Neyman-Pearson理论,这也是我们会见到的最常见假设检验问题类,这里第一Part的概念介绍略显枯燥,大家尽量理解即可。由于本系列为我独自完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢! 目录 Part 1:NP理论的基本概念 Part ...
注:终于写到最激动人心的部分了。假设检验应该是统计学中应用最广泛的数据分析方法,其中像"P值"、"t检验"、"F检验"这些如雷贯耳的名词都来自假设检验这一部分。我自己刚开进入生物信息学领域,用的最多的就是"利用t检验来判断某个基因在实验组和对照组中表达量的差异是否显著"。此外,对"P值"真正含义 ...
学习假设检验的基础知识,包括如何设置假设检验。 统计学家规定了关于可能性或不可能性的三个常规级别:如果达到样本均值的概率小于,0.05 即 5%,0.01 即 1% 或 0.001 即 0.1%,那么通常被视为不太可能发生。概率小于 0.1% 的情况是非常不可能的,这些叫做 α 水平。 现在 ...
1. 假设检验的基本概念 在总体的分布函数完全未知或只知其形式、 但不知其参数的情况下, 为了推断总体的某些性质, 提出某些关于总体的假设。 假设检验就是根据样本对所提出的假设作出判断: 是接受, 还是拒绝。 基本原理 小概率推断原理:小概率事件(概率接近0的事件 ...
在学完了几个重要分布之后,紧接着的内容就是这几个分布的使用,实际上这就是假设检验的过程 其中有一些概念: 分位点和分位数,p值,分布表,置信区间 因为是新概念, 我这种蒻蒻就是看得很不清楚,理解起来总是有点点模糊,很多书上讲得也不怎么清楚,现在搞清楚 参考博客: (假设检验) (t ...