原文:SMOTE算法解决样本不平衡

首先,看下Smote算法之前,我们先看下当正负样本不均衡的时候,我们通常用的方法: 抽样 常规的包含过抽样 欠抽样 组合抽样 过抽样:将样本较少的一类sample补齐 欠抽样:将样本较多的一类sample压缩 组合抽样:约定一个量级N,同时进行过抽样和欠抽样,使得正负样本量和等于约定量级N 这种方法要么丢失数据信息,要么会导致较少样本共线性,存在明显缺陷 权重调整 常规的包括算法中的weight ...

2020-03-26 19:50 0 2257 推荐指数:

查看详情

怎样解决样本不平衡问题

  这几年来,机器学习和数据挖掘非常火热,它们逐渐为世界带来实际价值。与此同时,越来越多的机器学习算法从学术界走向工业界,而在这个过程中会有很多困难。数据不平衡问题虽然不是最难的,但绝对是最重要的问题之一。 一、数据不平衡   在学术研究与教学中,很多算法都有一个基本假设,那就是数据分布 ...

Fri Aug 31 00:34:00 CST 2018 1 7318
样本不平衡问题如何解决

样本不平衡问题如何解决 1. 什么是样本不平衡问题? 所谓的类别不平衡问题指的是数据集中各个类别的样本数量极不均衡。以二分类问题为例,假设正类的样本数量远大于负类的样本数量,通常情况下把样本类别比例超过4:1(也有说3:1)的数据就可以称为不平衡数据。 样本不平衡实际上是一种非常常见的现象 ...

Fri May 01 05:58:00 CST 2020 0 2392
样本不平衡的处理

分类问题的一个underlying assumption是各个类别的数据都有自己的分布,当某类数据少到难以观察结构的时候,我们可以考虑抛弃该类数据,转而学习更为明显的多数类模式,而后将不符合多数类模式的样本判断为异常/少数类,某些时候会有更好的效果。此时该问题退化为异常检测(anomaly ...

Sun Nov 03 02:12:00 CST 2019 0 782
类别不平衡问题 之 SMOTE算法

类别不平衡问题 类别不平衡问题,顾名思义,即数据集中存在某一类样本,其数量远多于或远少于其他类样本,从而导致一些机器学习模型失效的问题。例如逻辑回归即不适合处理类别不平衡问题,例如逻辑回归在欺诈检测问题中,因为绝大多数样本都为正常样本,欺诈样本很少,逻辑回归算法会倾向于把大多数样本 ...

Wed Mar 20 19:02:00 CST 2019 0 802
数据不平衡SMOTE算法

在实际生产中,可能会碰到一种比较头疼的问题,那就是分类问题中类别型的因变量可能存在严重的不平衡,即类别之间的比例严重失调。 为了解决数据的非平衡问题,2002年Chawla提出了SMOTE算法,并受到学术界和工业界的一致认同。本文将对Smote算法Smote算法的几个变形,以及一个smote ...

Sat Sep 25 06:10:00 CST 2021 0 226
机器学习笔记:imblearn之SMOTE算法处理样本类别不平衡

一、业务背景 日常工作、比赛的分类问题中常遇到类别型的因变量存在严重的偏倚,即类别之间的比例严重失调。 样本量差距过大会导致建模效果偏差。 例如逻辑回归不适合处理类别不平衡问题,会倾向于将样本判定为大多数类别,虽然能达到很高的准确率,但是很低的召回率。 出现样本不均衡场景主要有 ...

Tue Mar 08 00:47:00 CST 2022 0 6666
正负样本不平衡处理方法总结【转】

转自:watersink 1, Bootstrapping,hard negative mining最原始的一种方法,主要使用在传统的机器学习方法中。比如,训练cascade类型分类模型的时候,可以将每一级分类错误的样本继续添加进下一层进行训练。 比如,SVM分类中去掉那些离分界线较远的样本 ...

Mon Sep 03 06:20:00 CST 2018 0 3595
机器学习样本不平衡处理

样本不平衡往往会导致以下问题: 对比例小的样本造成过拟合,也就是说预测偏向样本数较多的分类。这样就会大大降低模型的范化能力。往往accuracy(准确率)很高,但auc很低。 针对样本不平衡问题,有以下几种常见的解决思路: 搜集更多的数据 改变评判指标 对数据进行采样 ...

Mon Jan 06 22:37:00 CST 2020 0 794
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM