感谢参考原文-http://bjbsair.com/2020-03-27/tech-info/7090.html mini batch mini batch的思想非常朴素,既然全体样本当中数据量太大,会使得我们迭代的时间过长,那么我们 缩小数据规模 行不行? 那怎么减小规模呢,很简单,我们随机 ...
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第 篇文章,我们来看下Kmeans算法的优化。 在上一篇文章当中我们一起学习了Kmeans这个聚类算法,在算法的最后我们提出了一个问题:Kmeans算法虽然效果不错,但是每一次迭代都需要遍历全量的数据,一旦数据量过大,由于计算复杂度过大迭代的次数过多,会导致收敛速度非常慢。 想想看,如果我们是在面试当中遇到的这个问题, ...
2020-03-25 08:37 1 1357 推荐指数:
感谢参考原文-http://bjbsair.com/2020-03-27/tech-info/7090.html mini batch mini batch的思想非常朴素,既然全体样本当中数据量太大,会使得我们迭代的时间过长,那么我们 缩小数据规模 行不行? 那怎么减小规模呢,很简单,我们随机 ...
上文原始Kmeans提到,由于Kmeans使用启发式迭代,所以当初始点不当时,导致得不到全局最优。 Kmeans++ 这个算法思想也很简单,与原始Kmeans唯一不同的是选择初始点的方式。 如图 假设,我们的样本如上图分布,准备选择3个初始点,即k=3。 第一,我随机选择 ...
结果: 总结:可知不同的超参数对聚类的效果影响很大,因此在聚类之前采样的数据要尽量保持均匀,各类的方差最好先进行预研,以便达到较好的聚类效果! ...
前一阵子有一个学弟问kmeans算法的初始中心点怎么选,有没有什么算法。我让他看看kmeans++,结果学弟说有地方没看懂。然后,他不懂的地方,我给标注了一下。 下面是网上的资料,我对画线的地方做了标注。 k-means++算法选择初始seeds的基本思想就是:初始的聚类中心之间 ...
再进行Mini-batch 梯度下降法学习之前,我们首先对梯度下降法进行理解 一、梯度下降法(Gradient Descent) 优化思想:用当前位置的负梯度方向作为搜索方向,亦即为当前位置下降最快的方向,也称“最速下降法”。越接近目标值时,步长越小,下降越慢。 首先来看看梯度下降 ...
最近在网上查看用MapReduce实现的Kmeans算法,例子是不错,http://blog.csdn.net/jshayzf/article/details/22739063 但注释太少了,而且参数太多,如果新手学习的话不太好理解。所以自己按照个人的理解写了一个简单的例子并添加了详细的注释 ...
零:环境 python 3.6.5 JetBrains PyCharm 2018.1.4 x64 一:KMeans算法大致思路 KMeans算法是机器学习中的一种无监督聚类算法,是针对不具有类型的数据进行分类的一种算法 形象的来说可以说成是给定一组点data,给定要分类的簇数k ...
一、 环境: Python 3.7.4 Pycharm Community 2019.3 二、 问题: 对六个样本点[1, 5], [2, 4], [4, 1], [5, 0], [7, 6], [6, 7]进行K-means聚类 ...