自然语言处理中的语言模型预训练方法(ELMo、GPT和BERT) 最近,在自然语言处理(NLP)领域中,使用语言模型预训练方法在多项NLP任务上都获得了不错的提升,广泛受到了各界的关注。就此,我将最近看的一些相关论文进行总结,选取了几个代表性模型(包括ELMo [1],OpenAI GPT ...
预训练模型的梳理总结 摘要 本报告将从以下几个方面梳理预训练模型,陈述预训练 特指nlp领域 的what和how,总结预训练加微调模式的好处和弊端。通过时间线的方式梳理最近两年来预训练模型的发展脉络,重点阐述几个典型的预训练模型的做法和创新点。 chap :预训练模型 预训练模型一开始是在CV中流行起来的,在图像领域,由于有些任务可能面临这数据量匮乏这一难题,直接在此任务上进行神经网络的训练非常 ...
2020-03-22 13:33 0 1684 推荐指数:
自然语言处理中的语言模型预训练方法(ELMo、GPT和BERT) 最近,在自然语言处理(NLP)领域中,使用语言模型预训练方法在多项NLP任务上都获得了不错的提升,广泛受到了各界的关注。就此,我将最近看的一些相关论文进行总结,选取了几个代表性模型(包括ELMo [1],OpenAI GPT ...
预训练模型 在CV中,预训练模型如ImagNet取得很大的成功,而在NLP中之前一直没有一个可以承担此角色的模型,目前,预训练模型如雨后春笋,是当今NLP领域最热的研究领域之一。 预训练模型属于迁移学习,即在某一任务上训练的模型,经过微调(finetune)可以应用到其它任务上。 在NLP领域 ...
gensim intro doc | doc ZH Gensim是一个免费的 Python库,旨在从文档中自动提取语义主题,尽可能高效(计算机方面)和 painlessly(人性化)。 Gensim旨在处理原始的非结构化数字文本(纯文本)。 在Gensim的算法,比如Word2Vec ...
LDA 在主题模型中占有非常重要的地位,常用来文本分类。 LDA是基于贝叶斯模型的,涉及到贝叶 ...
汉语中句子以字为单位的,但语义理解仍是以词为单位,所以也就存在中文分词问题。主要的技术可以分为:规则分词、统计分词以及混合分词(规则+统计)。 基于规则的分词是一种机械分词,主要依赖于维护词典,在切分时将与剧中的字符串与词典中的词进行匹配。主要包括正向最大匹配法、逆向最大匹配法以及双向最大匹配 ...
。 经典的信息检索模型包括布尔模型,向量模型,TF-IDF模型。布尔模型以集合的布尔运算为基础,查询效率 ...
一、HMM模型 1.HMM模型的原理? 马尔科夫假设:当前状态仅与上一个状态有关; 观测独立性假设: 任意时刻的观察状态仅仅依赖于当前时刻的隐藏状态 图中Q是状态序列,O是观察序列 举例:词性标注【我爱美丽的中国】 状态 ...
词袋模型是一种表征文本数据的方法,可以从文本数据中提取出特征并用向量表示.词袋模型主要包括两件事 构建词汇表 确定度量单词出现的方法 词袋模型不考虑单词在文本中出现的顺序,只考虑单词是否出现. 具体以"双城记"开头为例 收集数据 构建词汇表 对于上面四个 ...