循环神经网络与LSTM网络 循环神经网络RNN 循环神经网络广泛地应用在序列数据上面,如自然语言,语音和其他的序列数据上。序列数据是有很强的次序关系,比如自然语言。通过深度学习关于序列数据的算法要比两年前的算法有了很大的提升。由此诞生了很多有趣的应用,比如语音识别,音乐合成,聊天 ...
运行结果: 目录: tensorflow简介 目录 tensorflow中的图 tensorflow变量的使用 tensorflow中的Fetch Feed tensorflow版helloworld 拟合线性函数的k和b tensorflow非线性回归 MNIST手写数字分类simple版 二次代价函数 交叉熵 cross entropy 对数似然代价函数 log likelihood cos ...
2020-03-22 00:29 0 1520 推荐指数:
循环神经网络与LSTM网络 循环神经网络RNN 循环神经网络广泛地应用在序列数据上面,如自然语言,语音和其他的序列数据上。序列数据是有很强的次序关系,比如自然语言。通过深度学习关于序列数据的算法要比两年前的算法有了很大的提升。由此诞生了很多有趣的应用,比如语音识别,音乐合成,聊天 ...
代码部分 ...
什么。 But! 我觉得邱锡鹏老师的书写得更好!我又要开始推荐这本免费的书了:《神经网络与深度学习》。这本书第六章循环神 ...
补充: 常见的激活函数:https://blog.csdn.net/tyhj_sf/article/details/79932893 常见的损失函数:https://blog.csdn.net/github_38140310/article/details/85061849 一、LSTM原理 ...
神经网络概述 这部分内容已经有很多人讲的很清楚了,我就不再重复了,只是在这里简单梳理一下详细可见http://m.blog.csdn.net/article/details?id=7681000 对神经网络的发展历史感兴趣的还可以看下http ...
pytorch循环神经网络实现回归预测 学习视频:莫烦python ...
#时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征。这是一类相对比较复杂的预测建模问题,和回归分析模型的预测不同,时间序列模型是依赖于事件发生的先后顺序的,同样大小的值改变顺序后输入模型产生的结果是不同的。 #时间序列模型最常用最强大的的工具就是递归神经网络 ...
正文 一个强大而流行的循环神经网络(RNN)的变种是长短期模型网络(LSTM)。 它使用广泛,因为它的架构克服了困扰着所有周期性的神经网络梯度消失和梯度爆炸的问题,允许创建非常大的、非常深的网络。 与其他周期性的神经网络一样,LSTM网络保持状态,在keras框架中实现这一点的细节可能会 ...