好怪的标题 前言 组合数学所关心的问题就是把某个集合中的对象排列成某种模式,使其满足一些指定的规则。 排列的存在性和排列的列举或分类是两种反复出现的通用问题 排列数量较小时我们可以枚举,当数量较大时我们就要考虑在不列出它们的情况下确定这些排列的技术问题 还有另外两种常常出现的组合问题 ...
Preface 前排提示:本文数学公式较多,加载 LaTeX 需要一定时间,可能会导致浏览器暂时卡顿,请耐心等待数学公式正常显示. 组合数学知识点的总结,本来准备写在一起的,结果发现字数有点多,导致 mathrm markdown 编辑器频繁卡顿,那就分三篇发布好了. mathrm Update :目前第一篇就是组合基础和组合原理,预计第二篇基础高数,生成函数和特殊计数数列,第三篇多项式算法,至于 ...
2020-03-18 16:44 1 852 推荐指数:
好怪的标题 前言 组合数学所关心的问题就是把某个集合中的对象排列成某种模式,使其满足一些指定的规则。 排列的存在性和排列的列举或分类是两种反复出现的通用问题 排列数量较小时我们可以枚举,当数量较大时我们就要考虑在不列出它们的情况下确定这些排列的技术问题 还有另外两种常常出现的组合问题 ...
组合数学 目录 组合数学 写在前面 计数原理 抽屉原理 容斥原理 组合问题分类 排列 圆排列 组合 Lucas 定理 组合数学 ...
解答: 非单身女生人数 = 女生人数 - 单身女生人数 = ( 总人数 - 男生人数) - (单身人数 - 男生单身人数) = (30 - 16)- (10 - 5 ...
容斥原理在集合论、概率论、组合数学中都常常出现,它是下面一个结论的推广。 这是因为,我们分别减|A|、|B|的时候,把|AB|减掉了两次,因此这里应该再加一次。 它的推广形式就是容斥定理。 在给出证明之前,我们很有必要充分的理解一下这个公式的内涵。我们基于S ...
回想到高中的的组合学中,有这样的问题,12个班中有13个人参加IOI的名额(前提每班至少出一个人),那么这会有几种分法? 一个很简单的思路就是把这13个名额摊开,然后拿11个隔板插到这13个名额形成的12个空隙里,然后用组合数的公式即可计算。而鸽巢原理的简单形式就和这个模型有联系 ...
)=\frac{n!}{(n-m)!} \] 2.组合数性质 \(\tbinom{n+m}{n}=\tbi ...
加法原理 今天您想给orz做一道题。 您有10道数学题,5道物理题,5道oi题,这些题orz都不会做。 可惜您只能用其中一道题来考orz. 请问您有多少种方法让orz爆零? 10+5+5 = 20 假设您有很多种手段,使用每种手段都可以达成目标。 那么:每种手段的方法数之和,就是达成 ...
组合数学的推式子题公式基本上都有了 \[\Large\sum_{i=0}^nC_n^i=2^n \] \[\Large\sum_{i=0}^nC_n^i(-1)^i=0 \] \[\Large\sum_{i=0}^nC_n^ix^i=(1+x)^n ...