在进行数据分析或者机器学习时,通常需要对数据进行预处理,其中主要的步骤就是数据标准化/归一化。 常用的数据标准化和归一化方法主要有: 1. 最大最小标准化 y=(x-min(x))/(max(x)-min(x)),x为一序列,即x={x1,x2,x3......},max(x)为最大值 ...
在处理多维特征问题的时候,需要保证特征具有相近的尺度,这有助于梯度下降算法更快的收敛。 以预测房屋价格为例,假设有两个特征,房屋的尺寸和房屋的数量,尺寸的值为 平方英尺,而房间数量的值则是 ,以两个参数分别为横纵坐标,绘制代价函数的等 高线图能,看出图像会显得很扁,梯度下降算法需要非常多次的迭代才能收敛。 归一化方法 .最大值最小值归一化: frac x min max min 优点:所有数据都能 ...
2020-03-16 18:05 0 740 推荐指数:
在进行数据分析或者机器学习时,通常需要对数据进行预处理,其中主要的步骤就是数据标准化/归一化。 常用的数据标准化和归一化方法主要有: 1. 最大最小标准化 y=(x-min(x))/(max(x)-min(x)),x为一序列,即x={x1,x2,x3......},max(x)为最大值 ...
公号:码农充电站pro 主页:https://codeshellme.github.io 一般在机器学习的模型训练之前,有一个比较重要的步骤是数据变换。 因为,一般情况下,原始数据的各个特征的值并不在一个统一的范围内,这样数据之间就没有可比性。 数据变换的目的是将不 ...
数据标准化/归一化normalization 转自:数据标准化/归一化normalization 这里主要讲连续型特征归一化的常用方法。离散参考[数据预处理:独热编码(One-Hot Encoding)]。 基础知识参考: [均值、方差 ...
参数的标准化与归一化 注:中文资料中从英文文献中学习,提到normalization和standardization时候,往往将其翻译为“标准化”和“归一化”。但是很坑的一点是,由于翻译软件也没有很好的区分两者,所以几乎所有人都将两者混为一谈,甚至A文章对于“标准化”和“归一化”翻译 ...
公号:码农充电站pro 主页:https://codeshellme.github.io 一般在机器学习的模型训练之前,有一个比较重要的步骤是数据变换。 因为,一般情况下,原始数据的各个特征的值并不在一个统一的范围内,这样数据之间就没有可比性。 数据变换的目的是将不同渠道,不同量 ...
数据的标准化 在数据分析之前,我们通常需要先将数据标准化(normalization),利用标准化后的数据进行数据分析。数据标准化也就是统计数据的指数化。数据标准化处理主要包括数据同趋化处理和无量纲化处理两个方面。 数据同趋化处理主要解决不同性质数据问题,对不同性质指标直接加总 ...
转自:数据标准化/归一化normalization 这里主要讲连续型特征归一化的常用方法。离散参考[数据预处理:独热编码(One-Hot Encoding)]。 基础知识参考: [均值、方差与协方差矩阵 ] [矩阵论:向量范数和矩阵范数 ] 数据的标准化 ...
归一化(Rescaling,max-min normalization,有的翻译为离差标准化)是指将数据缩放到[0,1]范围内,公式如下: X' = [X - min(X)] / [max(X) - min(X)] 标准化(Standardization, Z-score ...