把NFM的等权求和变成了加权求和。 以下代码针对Dense输入感觉更容易理解模型结构,针对spare ...
CTR学习笔记系列的第一篇,总结在深度模型称王之前经典LR,FM, FFM模型,这些经典模型后续也作为组件用于各个深度模型。模型分别用自定义Keras Layer和estimator来实现,哈哈一个是旧爱一个是新欢。特征工程依赖feature column实现,这里做的比较简单在后面的深度模型再好好搞。 问题定义 CTR本质是一个二分类问题, X in R N 是用户和广告相关特征, Y in , ...
2020-03-16 09:13 1 1963 推荐指数:
把NFM的等权求和变成了加权求和。 以下代码针对Dense输入感觉更容易理解模型结构,针对spare ...
xDeepFM用改良的DCN替代了DeepFM的FM部分来学习组合特征信息,而FiBiNET则是应用SENET加入了特征权重比NFM,AFM更进了一步。在看两个model前建议对DeepFM, Deep&Cross, AFM,NFM都有简单了解,不熟悉的可以看下文章最后其他model的博客 ...
之前总结了PNN,NFM,AFM这类两两向量乘积的方式,这一节我们换新的思路来看特征交互。DeepCrossing是最早在CTR模型中使用ResNet的前辈,DCN在ResNet上进一步创新,为高阶特征交互提供了新的方法并支持任意阶数的特征交叉。 以下代码针对Dense输入更容易理解模型结构 ...
背景 这一篇我们从基础的深度ctr模型谈起。我很喜欢Wide&Deep的框架感觉之后很多改进都可以纳入这个框架中。Wide负责样本中出现的频繁项挖掘,Deep负责样本中未出现的特征泛化。而后续的改进要么用不同的IFC让Deep更有效的提取特征交互信息,要么是让Wide更好的记忆样本信息 ...
这一节我们总结FM三兄弟FNN/PNN/DeepFM,由远及近,从最初把FM得到的隐向量和权重作为神经网络输入的FNN,到把向量内/外积从预训练直接迁移到神经网络中的PNN,再到参考wide&Deep框架把人工特征交互替换成FM的DeepFM,我们终于来到了2017年。。。 以下代码针对 ...
欢迎大家前往腾讯云技术社区,获取更多腾讯海量技术实践干货哦~ 作者:高航 一. Wide&&Deep 模型 首先给出Wide && Deep [1] ...
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由鹅厂优文发表于云+社区专栏 [一、前言](javascript:😉 二、深度学习模型 [1. Factorization-machine(FM)](javascript:😉 [FM ...
在广告领域,预测用户点击率(Click Through Rate,简称CTR)领域近年也有大量关于深度学习方面的研究,仅这两年就出现了不少于二十多种方法 本文就近几年CTR预估领域中学术界的经典方法进行探究, 并比较各自之间模型设计的初衷和各自优缺点。 通过十种不同CTR深度模型的比较 ...