原文:拉格朗日乘数法

拉格朗日乘数法是用于求条件极值的方法。对于条件极值,通常是将条件方程转换为单值函数,再代入待求极值的函数中,从而将问题转化为无条件极值问题进行求解。但是如果条件很复杂不能转换,就要用到拉格朗日乘数法了。拉格朗日乘数法使用条件极值的一组必要条件来求出一些可能的极值点 不是充要条件,说明求出的不一定是极值,还需要验证 。 如寻求函数 z f x,y 在条件 varphi x,y 下取得极值的必要条件 ...

2020-03-18 13:15 0 1103 推荐指数:

查看详情

乘数

乘数 等式约束 作为一种优化算法,拉格朗日乘子主要用于解决约束优化问题,它的基本思想就是通过引入拉格朗日乘子来将含有n个变量和k个约束条件的约束优化问题转化为含有(n+k)个变量的无约束优化问题。拉格朗日乘子背后的数学意义是其为约束方程梯度线性组合中每个向量的系数 ...

Mon Nov 26 01:51:00 CST 2018 0 837
[Math & Algorithm] 乘数

  乘数(Lagrange Multiplier Method)之前听数学老师授课的时候就是一知半解,现在越发感觉乘数应用的广泛性,所以特意抽时间学习了麻省理工学院的在线数学课程。新学到的知识一定要立刻记录下来,希望对各位博友有些许帮助。 1. 乘数的基本思想 ...

Sun Nov 08 10:25:00 CST 2015 10 47759
乘数与KKT条件

关于乘数和KKT条件的一些思考   从我开始接触乘数到现在已经将近有四个月了,但似乎直到今天我对其的理解才开始渐渐清晰,相信很多人在科研初期也会对一些基础的算法困惑不解,而一篇好的教程则可以大大缩短困惑的时间,从而把更多时间用在开创性的工作上去。经过近几日的搜索,我发现网上 ...

Thu Jul 09 06:41:00 CST 2015 0 2482
梯度,方向梯度,乘数

一 梯度 函数 z = f(x, y) 梯度表示为 ,其梯度方向始终指向函数较大值处。函数 z = f(x, y) 几何图形需要三维空间表示,为了更方便观察函数,可以使用二维平面上等高线表示 ...

Sat Aug 03 00:16:00 CST 2019 0 973
最优化方法:乘数

https://blog.csdn.net/pipisorry/article/details/52135854 https://blog.csdn.net/yujianmin1990/article/details/48494607 解决约束优化问题——乘数 乘数 ...

Sat May 19 03:14:00 CST 2018 0 16563
思考:线性规划对偶与乘数

乘数和对偶线性规划问题的联系 乘数解题的基本思想 下面以一个二元函数为例子解释乘数用于求解条件极值问题的思想。 我们给定一个二元函数\(z\): \[z=f(x,y) \] 和一个约束条件: \[\varphi(x,y ...

Sat Apr 04 10:20:00 CST 2020 0 1407
[OI笔记]利用乘数求函数的最值

\(about\) 为什么写这篇\(Blog\)呢\(...\) 乘数在今天训练的一道题上用到了\(,\)当场\(wyj/pcf/csl\)都正确的推出了式子\(.\) 但我却只会暴力\(DP.\)虽然也过了题但是多用了\(2k-3k\)的代码量\(.\) 但是赛后一看 ...

Sat Aug 29 18:34:00 CST 2020 0 652
多变量微积分笔记6——乘数

  基本的拉格朗日乘子(又称为乘数),就是求函数 f(x1,x2,...) 在 g(x1,x2,...)=C 的约束条件下的极值的方法。其主要思想是引入一个新的参数 λ (即拉格朗日乘子),将约束条件函数与原函数联系到一起,使能配成与变量数量相等的等式方程,从而求出得到原函数极值 ...

Wed Feb 28 02:04:00 CST 2018 0 3725
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM