特征工程(Feature Engineering) 特征工程其本质上是一项工程活动,它的目的是最大限度地从原始数据中提取特征以供算法和模型使用。 特征工程的重要性: 特征越好,灵活性越强 特征越好,模型越简单 特征越好,性能越出色 数据和特征决定了机器学习的上限 ...
在业界广泛流传着一句话:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。 由此可见,数据和特征是多么的重要,而在数据大多数场景下,数据已经就绪,不同人对于同样的数据处理得到的特征却千差万别,最终得到的建模效果也是高低立现。从数据到特征这就要从特征工程说起了... . 特征工程 首先介绍下,特征工程是什么:利用数据领域的相关知识来创建能够使机器学习算法达到最佳性能的特征的过程 . ...
2020-03-15 21:53 0 1443 推荐指数:
特征工程(Feature Engineering) 特征工程其本质上是一项工程活动,它的目的是最大限度地从原始数据中提取特征以供算法和模型使用。 特征工程的重要性: 特征越好,灵活性越强 特征越好,模型越简单 特征越好,性能越出色 数据和特征决定了机器学习的上限 ...
一、概念 特征选择feature selection:也被称为variable selection或者attribute selection. 是选取已有属性的子集subset来进行建模的一种方式. 进行特征选择的目的主要有: 简化模型,缩短训练时间,避免维数灾难(curse ...
一、Standardization 方法一:StandardScaler from sklearn.preprocessing import StandardScaler sds = Sta ...
如何选择特征 根据是否发散及是否相关来选择 方差选择法 先计算各个特征的方差,根据阈值,选择方差大于阈值的特征 方差过滤使用到的是VarianceThreshold类,该类有个参数threshold,该值为最小方差的阈值,然后使用fit_transform进行特征值过滤 相关系数法 ...
概念: 特征工程:本质上是一项工程活动,他目的是最大限度地从原始数据中提取特征以供算法和模型使用 特征工程的重要性:特征越好,灵活性越强、模型越简单、性能越出色。 特征工程包括:数据处理、特征选择、维度压缩 量纲不一: 就是单位,特征的单位不一致,不能放在一起比较 ...
特征处理是特征工程的核心部分,特征工程是数据分析中最耗时间和精力的一部分工作,它不像算法和模型那样式确定的步骤,更多的是工程上的经验和权衡,因此没有统一的方法,但是sklearn提供了较为完整的特征处理方法,包括数据预处理,特征选择,降维等。首次接触到sklearn,通常会被其丰富且方便的算法 ...
在特征工程之特征选择中,我们讲到了特征选择的一些要点。本篇我们继续讨论特征工程,不过会重点关注于特征表达部分,即如果对某一个特征的具体表现形式做处理。主要包括缺失值处理,特殊的特征处理比如时间和地理位置处理,离散特征的连续化和离散化处理,连续特征的离散化处理几个方面。 1. ...
1.基于树模型提取特征 2.基于L1,L2惩罚值提取特征 3.递归特征消除法提取特征 4.互信息选择法提取特征 5.利用相关系数选择特征 6.卡方检验法提取特征 7.利用方差选择特征 ...