数据挖掘入门系列教程(三点五)之决策树 本来还是想像以前一样,继续学习《 Python数据挖掘入门与实践 》的第三章“决策树”,但是这本书上来就直接给我怼了一大串代码,对于决策树基本上没有什么介绍,可直接把我给弄懵逼了,主要我只听过决策树还没有认真的了解过它。 这一章节主要是对决策树做一个介绍 ...
数据挖掘入门系列教程 四 之基于scikit lean决策树处理Iris 加载数据集 数据特征 训练 随机森林 调参工程师 结尾 数据挖掘入门系列教程 四 之基于scikit lean决策树处理Iris 在上一篇博客,我们介绍了决策树的一些知识。如果对决策树还不是很了解的话,建议先阅读上一篇博客,在来学习这一篇。 本次实验基于scikit learn中的Iris数据。说了好久的Iris,从One ...
2020-03-15 00:54 0 904 推荐指数:
数据挖掘入门系列教程(三点五)之决策树 本来还是想像以前一样,继续学习《 Python数据挖掘入门与实践 》的第三章“决策树”,但是这本书上来就直接给我怼了一大串代码,对于决策树基本上没有什么介绍,可直接把我给弄懵逼了,主要我只听过决策树还没有认真的了解过它。 这一章节主要是对决策树做一个介绍 ...
从这篇开始,我将介绍分类问题,主要介绍决策树算法、朴素贝叶斯、支持向量机、BP神经网络、懒惰学习算法、随机森林与自适应增强算法、分类模型选择和结果评价。总共7篇,欢迎关注和交流。 这篇先介绍分类问题的一些基本知识,然后主要讲述决策树算法的原理、实现,最后利用决策树算法做一个泰坦尼克号船员 ...
1、引言 决策树是建立在信息论基础之上,对数据进行分类挖掘的一种方法。其思想是,通过一批已知的训练数据建立一棵决策树,然后利用建好的决策树,对数据 ...
决策树分类是数据挖掘中分类分析的一种算法。顾名思义,决策树是基于“树”结构来进行决策的,是人类在面临决策问题时一种很自然的处理机制。例如下图一个简单的判别买不买电脑的决策树: 下图是一个测试数据集,我们以此数据集为例,来看下如何生成 ...
用决策树DecisionTreeClassifier的数据挖掘算法来通过三个参数,Pclass,Sex,Age,三个参数来求取乘客的获救率。 分为三大步: 一,创建决策树DecisionTreeClassifier 对象 二,对象调用fit()函数,训练数据,建立模型 三,对象调用 ...
数据集来源:1. 2013-14 NBA Schedule and Results 2.2013年 NBA 赛季排名情况 参考书籍:《Python数据挖掘入门与实践》 1.加载数据集: 使用pandas加载数据集,有1319行数据 ...
决策树是一个非参数的监督式学习方法,主要用于分类和回归。算法的目标是通过推断数据特征,学习决策规则从而创建一个预测目标变量的模型。如下如所示,决策树通过一系列if-then-else 决策规则 近似估计一个正弦曲线。 决策树优势: 简单易懂,原理清晰,决策树可以实现可视化 数据准备 ...
决策树(Decision tree) 决策树是以实例为基础的归纳学习算法。 它从一组无次序、无规则的元组中推理出决策树表示形式的分类规则。它采用自顶向下的递归方式,在决策树的内部结点进行属性值的比较,并根据不同的属性值从 该结点向下分支,叶结点是要学习划分的类。从根 ...