seq2seq 是一个 Encoder–Decoder 结构的网络,它的输入是一个序列,输出也是一个序列, Encoder 中将一个可变长度的信号序列变为固定长度的向量表达,Decoder 将这个固定长度的向量变成可变长度的目标的信号序列。 这个结构最重要的地方在于输入序列和输出序列 ...
一 任务背景介绍 本次训练实战参照的是该篇博客文章:https: kexue.fm archives 本次训练任务采用的是THUCNews的数据集,THUCNews是根据新浪新闻RSS订阅频道 年间的历史数据筛选过滤生成,包含 万篇新闻文档,由多个类别的新闻标题和内容组成。本次任务的目标是利用bert结合Unilm模型的思想来训练seq seq模型,输入由s 和s 两个segment组成,s 是文 ...
2020-03-09 15:04 0 1743 推荐指数:
seq2seq 是一个 Encoder–Decoder 结构的网络,它的输入是一个序列,输出也是一个序列, Encoder 中将一个可变长度的信号序列变为固定长度的向量表达,Decoder 将这个固定长度的向量变成可变长度的目标的信号序列。 这个结构最重要的地方在于输入序列和输出序列 ...
导论 自然语言处理,NLP,接下来的几篇博客将从四方面来展开: (一)基本概念和基础知识 (二)嵌入Embedding (三)Text classification (四)Language Models (五)Seq2seq/Transformer/BERT ...
https://pan.baidu.com/s/1Qgyx_2vJirKAcX2HxYuCwA ...
Sequence Generation 引入 在循环神经网络(RNN)入门详细介绍一文中,我们简单介绍了Seq2Seq,我们在这里展开一下 一个句子是由 characters(字) 或 words(词) 组成的,中文的词可能是由数个字构成的。 如果要用训练RNN写句子的话 ...
网络输入是一个序列,一句话,图像的某一行,都可以认为是一个序列, 网络输出的也是一个序列。 RNN的架构 我们把所有的输出o连起来,就成了一个序列。 rnn有一些缺点,lstm可以加入一个 ...
1. Attention与Transformer模型 Attention机制与Transformer模型,以及基于Transformer模型的预训练模型BERT的出现,对NLP领域产生了变革性提升。现在在大型NLP任务、比赛中,基本很少能见到RNN的影子了。大部分是BERT(或是其各种变体 ...
Seq2Seq模型 基本原理 核心思想:将一个作为输入的序列映射为一个作为输出的序列 编码输入 解码输出 解码第一步,解码器进入编码器的最终状态,生成第一个输出 以后解码器读入上一步的输出,生成当前步输出 ...
作者|Renu Khandelwal 编译|VK 来源|Towards Data Science 在本文中,你将了解: 为什么我们需要seq2seq模型的注意力机制? Bahdanua的注意力机制是如何运作的? Luong的注意力机制是如何运作的? 什么是局部和全局注意力 ...