yolo3-tiny是yolo3的简化版本,主要区别为、主干网络采用一个7层conv+max网络提取特征(和darknet19类似),嫁接网络采用的是13*13、26*26的分辨率探测网络,结构如下。yolo3-tiny的优点主要是,网络简单,计算量较小,可以在移动端或设备端运行。缺点为精度也比较 ...
yolo3-tiny是yolo3的简化版本,主要区别为、主干网络采用一个7层conv+max网络提取特征(和darknet19类似),嫁接网络采用的是13*13、26*26的分辨率探测网络,结构如下。yolo3-tiny的优点主要是,网络简单,计算量较小,可以在移动端或设备端运行。缺点为精度也比较 ...
MobileNet (Efficient Convolutional Neural Networks for Mobile Vision Applications)——Google CVPR-2017 MobileNet引入了传统网络中原先采用的group思想,即限制滤波器的卷积计算只针对特定 ...
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications MobileNetV2: Inve ...
YOLO YOLO是Joseph Redmon等人在2015年的论文中提出的一种极其快速、准确的物体检测架构随后在2016年(YOLOv2)和2018(YOLOv3)中进行了改进。 YOLOv3的架构和全卷积网络的架构非常相似,但有一些重要的区别: 它为每个网格单元输出5个边界框 ...
最近一段时间,重新研读了谷歌的mobilenet系列,对该系列有新的认识。 1.MobileNet V1 这篇论文是谷歌在2017年提出了,专注于移动端或者嵌入式设备中的轻量级CNN网络。该论文最大的创新点是,提出了深度可分离卷积(depthwise separable convolution ...
MobileNet系列之MobileNet_v1 MobileNet系列之MobileNet_v2 导言: 继MobileNet_v1和v2提出后,在2019年,MobileNet_v3在众人的期盼下出来了,MobileNet_v3论文提出了两个模型 ...
paper https://arxiv.org/abs/1704.04861 MobileNet 由谷歌在 2017 年提出,是一款专注于在移动设备和嵌入式设备上的 轻量级 CNN神经网络,并 迅速 衍生了 v1 v2 v3 三个版本; 相比于传统的 CNN 网络,在准确率小幅降低的前提下 ...
目录 1. Depth Separable Convolution 2. 网络结构 3. 宽度因子和分辨率因子 4. 代码实现 参考博客: https:/ ...