原文:推荐系统的特征工程

推荐系统中最重要的两部分是特征和模型,早期模型上没有很大突破的时候,人工特征工程是推荐系统发展的主要方向。在这里我总结一下做特征工程的思路和不同特征的处理方式。 . 创造特征的思路 业务背景特征 在推荐系统中猜测用户是否点击内容,可以仔细分析用户从打开手机到看到推荐内容的整个过程中的任何因素,比如这个过程大致分为用户打开手机 用户看到推荐内容 用户是否点击三个过程,针对用户打开手机这个动作,可以产 ...

2020-03-05 11:21 0 2370 推荐指数:

查看详情

推荐系统学习-特征工程(LR,FM)-代码

在一口气看完项亮老师的《推荐系统实践》后,又花费几天看完了王喆老师的《深度学习推荐系统》,虽然学过一门深度学习的课,但是直接看推荐系统的深度学习还是有点不懂的(手动狗头×)。在上一篇的协同过滤后,这一篇来记录协同过滤后推荐系统的发展,也就是特征工程。 (图片有点大,可右键点击查看) 推荐系统 ...

Sat May 16 22:52:00 CST 2020 0 975
推荐系统篇】--推荐系统之之特征工程部分---构建训练集流程

一、前述 根据前文中架构,本文我们讨论线下部分构建训练集部分。因为我们离线部分模型的选择是逻辑回归,所以我们数据必须有x和y. 二、具体流程 1.从数据库中分离出我们需要的数据。 用户行为表(日志) 用户历史下载表 商品词表(商品的基本特征 ...

Tue Mar 27 02:06:00 CST 2018 0 1190
推荐系统中的ID特征为什么有用?

常见的id类特征有用户特征user_id,物品特征item_id等,通常来说这类特征都是人为按顺序编码的特征,并不能反映用户或者物品的自然属性特征。但是在很多推荐相关的文章,都有提到使用这类特征,而且似乎还非常重要,并且除了推荐系统,在计算广告、反欺诈风控模型里都有成功的案例。这是 ...

Sun Jan 31 05:15:00 CST 2021 0 806
特征工程(上)

特征选择 (feature_selection) Filter 移除低方差的特征 (Removing features with low variance) 单变量特征选择 (Univariate feature selection) Wrapper 递归特征消除 ...

Mon May 27 20:02:00 CST 2019 0 1037
特征工程

上周参加了学校的数据挖掘竞赛,总的来说,在还需要人工干预的机器学习相关的任务中,主要解决两个问题:(1)如何将原始的数据处理成合格的数据输入(2)如何获得输入数据中的规律。第一个问题的解决方案是:特征工程。第二个问题的解决办法是:机器学习。 相对机器学习的算法 ...

Mon Jan 16 23:32:00 CST 2017 0 9011
特征工程 - 特征筛选

特征筛选的方法主要包括:Filter(过滤法)、Wrapper(封装法)、Embedded(嵌入法) filter: 过滤法 特征选择方法一:去掉取值变化小的特征(Removing features with low variance) 方法虽然简单但是不太好 ...

Sat Aug 03 00:51:00 CST 2019 0 696
特征工程1:特征的抽取

特征工程 · 定义:特征工程是指将原始数据转换为特征向量。(比如一片文档包含文本等类型,将这些文本类型的数据转换为数字类型的数据,这个过程是为了计算机更好的理解数据) · 目的:特征工程的处理直接影响模型的预测结果,目的也正是为了提高模型的预测效果 ...

Mon Jun 17 21:46:00 CST 2019 0 498
推荐系统那点事 —— 基于Spark MLlib的特征选择

在机器学习中,一般都会按照下面几个步骤:特征提取、数据预处理、特征选择、模型训练、检验优化。那么特征的选择就很关键了,一般模型最后效果的好坏往往都是跟特征的选择有关系的,因为模型本身的参数并没有太多优化的点,反而特征这边有时候多加一个或者少加一个,最终的结果都会差别很大 ...

Wed Jul 12 06:24:00 CST 2017 0 7219
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM