原文:详解机器学习损失函数之交叉熵

本文始发于个人公众号:TechFlow,原创不易,求个关注 今天这篇文章和大家聊聊机器学习领域的熵。 我在看paper的时候发现对于交叉熵的理解又有些遗忘,复习了一下之后,又有了一些新的认识。故写下本文和大家分享。 熵这个概念应用非常广泛,我个人认为比较经典的一个应用是在热力学当中,反应一个系统的混乱程度。根据热力学第二定律,一个孤立系统的熵不会减少。比如一盒乒乓球,如果把盒子掀翻了,乒乓球散出来 ...

2020-02-26 09:11 0 1244 推荐指数:

查看详情

机器学习基础】交叉(cross entropy)损失函数是凸函数吗?

之所以会有这个问题,是因为在学习 logistic regression 时,《统计机器学习》一书说它的负对数似然函数是凸函数,而 logistic regression 的负对数似然函数(negative log likelihood)和 交叉函数(cross entropy)具有一样的形式 ...

Mon Dec 02 05:33:00 CST 2019 1 1040
机器学习之路:tensorflow 深度学习中 分类问题的损失函数 交叉

经典的损失函数----交叉 1 交叉:   分类问题中使用比较广泛的一种损失函数, 它刻画两个概率分布之间的距离   给定两个概率分布p和q, 交叉为:  H(p, q) = -∑ p(x) log q(x)   当事件总数是一定的时候, 概率函数满足: 任意x p(X ...

Thu Jun 07 00:02:00 CST 2018 0 1934
机器学习笔记之为什么逻辑回归的损失函数交叉

0x00 概要 逻辑回归(logistic regression)在机器学习中是非常经典的分类方法,周志华教授的《机器学习》书中称其为对数几率回归,因为其属于对数线性模型。 在算法面试中,逻辑回归也经常被问到,常见的面试题包括: 逻辑回归推导; 逻辑回归如何实现多分类? SVM ...

Wed Feb 24 07:08:00 CST 2021 0 363
详解机器学习中的、条件、相对交叉

目录 信息 条件 相对 交叉 总结 1、信息 (information entropy) (entropy) 这一词最初来源于热力学。1948年,克劳德·爱尔伍德·香农将热力学中的引入信息论,所以也被称为香农 (Shannon entropy),信息 ...

Thu Apr 05 20:50:00 CST 2018 14 60195
交叉损失函数原理详解

交叉损失函数原理详解 一、总结 一句话总结: 1、叉损失函数(CrossEntropy Loss):分类问题中经常使用的一种损失函数 2、交叉能够衡量同一个随机变量中的两个不同概率分布的差异程度,在机器学习中就表示为真实概率分布与预测概率分布之间的差异。交叉的值越小,模型预测效果 ...

Tue Jul 21 23:08:00 CST 2020 0 667
交叉损失函数

交叉损失函数的概念和理解 觉得有用的话,欢迎一起讨论相互学习~ 公式 \[ loss =\sum_{i}{(y_{i} \cdot log(y\_predicted_{i}) +(1-y_{i}) \cdot log(1-y\_predicted_{i}) )} \] 定义 ...

Sat Aug 26 23:15:00 CST 2017 2 8431
损失函数交叉

损失函数交叉 交叉用于比较两个不同概率模型之间的距离。即先把模型转换成这个数值,然后通过数值去定量的比较两个模型之间的差异。 信息量 信息量用来衡量事件的不确定性,即该事件从不确定转为确定时的难度有多大。 定义信息量的函数为: \[f(x):=\text{信息量 ...

Tue Aug 03 05:26:00 CST 2021 0 114
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM