目录 1. zip argument #1 must support iteration 2. torch.nn.DataParallel 3. model.state ...
在深度学习模型的训练过程中,难免引入随机因素,这就会对模型的可复现性产生不好的影响。但是对于研究人员来讲,模型的可复现性是很重要的。这篇文章收集并总结了可能导致模型难以复现的原因,虽然不可能完全避免随机因素,但是可以通过一些设置尽可能降低模型的随机性。 . 常规操作 PyTorch官方提供了一些关于可复现性的解释和说明。 在PyTorch发行版中,不同的版本或不同的平台上,不能保证完全可重复的结 ...
2020-02-26 08:07 9 1139 推荐指数:
目录 1. zip argument #1 must support iteration 2. torch.nn.DataParallel 3. model.state ...
state_dict()函数可以返回所有的状态数据。load_state_dict()函数可以加载这些状态数据。 推荐使用: 不推荐直接save与load,因为这种方式严重依赖模型定义方法以及文件路径结构等,容易出问题。 【PyTorch中已封装的网络模型 ...
在pytorch进行模型保存的时候,一般有两种保存方式,一种是保存整个模型,另一种是只保存模型的参数。 torch.save(model.state_dict(), "my_model.pth") # 只保存模型的参数 ...
让模型接着上次保存好的模型训练,模型加载 #实例化模型、优化器、损失函数 model = MnistModel().to(config.device) optimizer = optim.Adam(model.parameters(),lr=0.01 ...
本节内容参照小土堆的pytorch入门视频教程,主要通过查询文档的方式讲解如何搭建卷积神经网络。学习时要学会查询文档,这样会比直接搜索良莠不齐的博客更快、更可靠。讲解的内容主要是pytorch核心包中TORCH.NN中的内容(nn是Neural Netwark的缩写)。 通常,我们定义 ...
出来,然后放在自己的模型中对应的位置 2、直接用原本的vgg16网络去加载预训练模型,然后再修改网络。 ...
5月的最后一天,需要写点什么。 通过前几篇博客对Faster-RCNN算是有了一个比较全面的认识,接下来的半个月断断续续写了一些代码,基本上复现了论文。利用torchvision的VGG16预训练权重,在VOC02007trainval训练13个epoch,最后VOC2007test的map ...
Object Detection and Classification using R-CNNs 目标检测:数据增强(Numpy+Pytorch) - 主要探究检测分割模型数据增强操作有哪些? - 检测分割模型图像输入大小?检测模型Faster rcnn输入较大800+ ...